
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

DESCRIPTION

1

5

9

15 CP

CE

BIN/DEC

7Z73683.3

10 UP/DN

The HEF4029B is a synchronous edge-triggered up/down 4-bit binary/BCD decade counter with a clock input (CP), an active LOW count enable input (\overline{CE}), an up/down control input (UP/ \overline{DN}), a binary/decade control input (BIN/ \overline{DEC}), an overriding asynchronous active HIGH parallel load input (PL), four parallel data inputs (P₀ to P₃), four parallel buffered outputs (\overline{O}_0 to O₃) and an active LOW terminal count output (\overline{TC}).

4

Po

C_D/S_D

00

Fig.1 Functional diagram.

6

12

P

PARALLEL LOAD CIRCUITRY

COUNTER

01

111

3

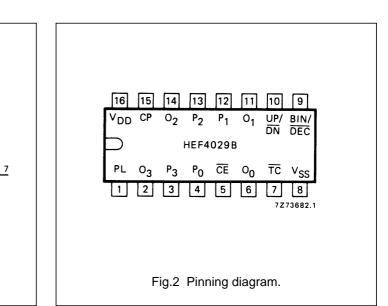
P3

03

12

TC

|13


P2

02

114

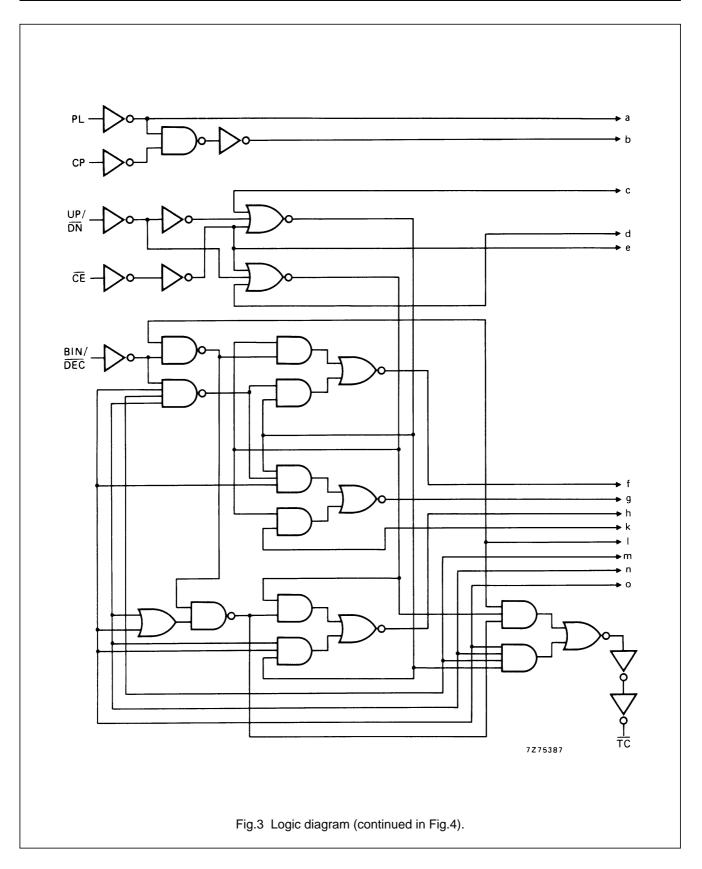
Information on P_0 to P_3 is asynchronously loaded into the counter while PL is HIGH, independent of CP.

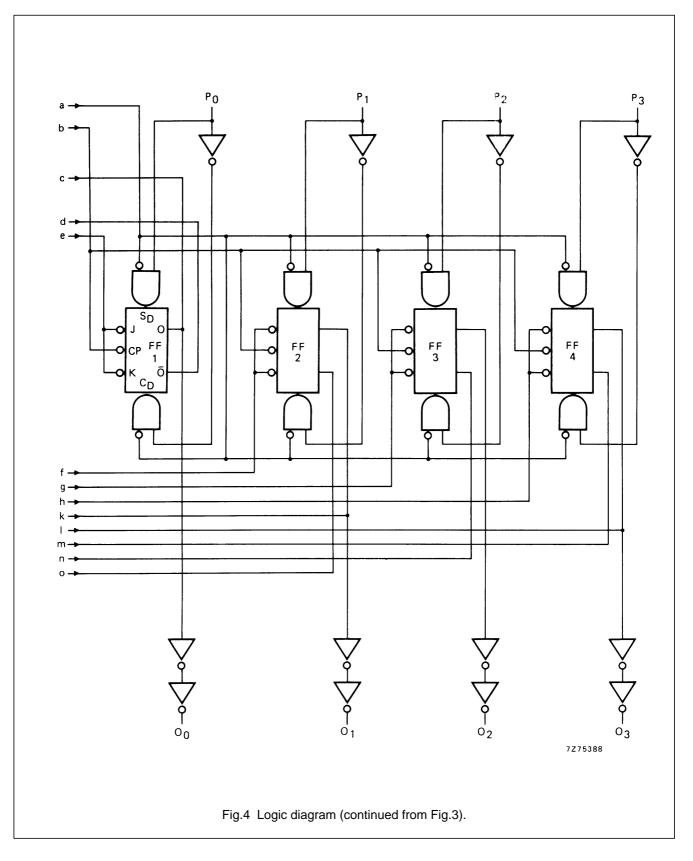
The counter is advanced one count on the LOW to HIGH transition of CP when \overline{CE} and PL are LOW. The \overline{TC} signal is normally HIGH and goes LOW when the counter reaches its maximum count in the UP mode, or the minimum count in the DOWN mode provided \overline{CE} is LOW.

HEF4029BP(N):	16-lead DIL; plastic (SOT38-1)					
HEF4029BD(F):	16-lead DIL; ceramic (cerdip)					
	(SOT74)					
HEF4029BT(D):	16-lead SO; plastic					
	(SOT109-1)					
(): Package Designator North America						

PINNING

PL	parallel load input
P ₀ to P ₃	parallel data inputs
BIN/DEC	binary/decade control input
UP/DN	up/down control input
CE	count enable input (active LOW)
CP	clock input (LOW to HIGH, edge triggered)
O_0 to O_3	buffered parallel outputs
TC	terminal count output (active LOW)


FAMILY DATA, I_{DD} LIMITS category MSI


See Family Specifications

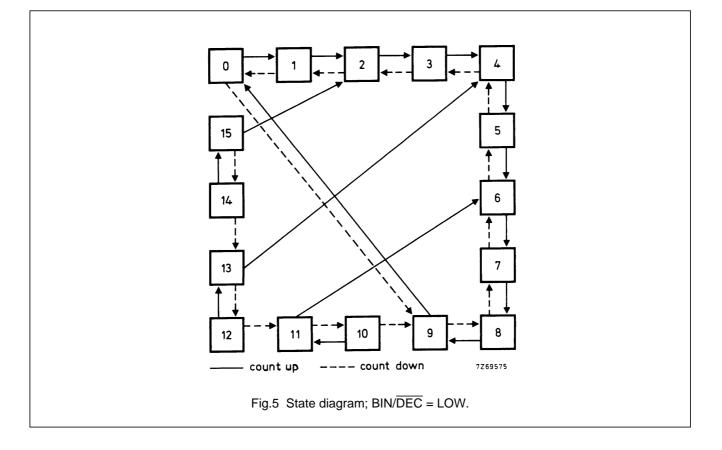
HEF4029B

MSI

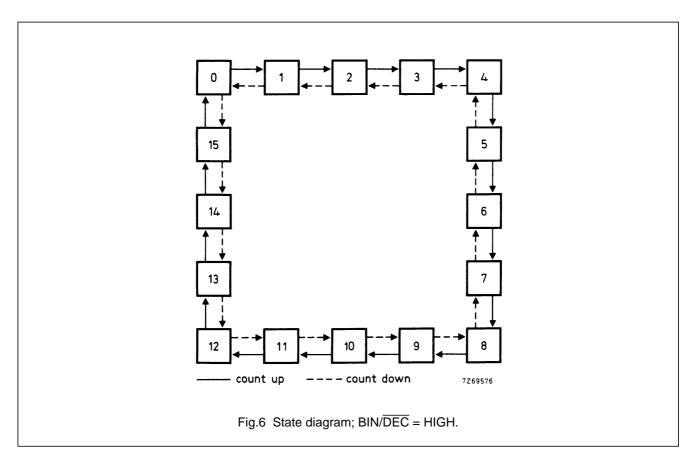
Synchronous up/down counter, binary/decade counter

FUNCTION TABLE

PL	BIN/DEC	UP/DN	CE	СР	MODE
Н	Х	Х	Х	Х	parallel load ($P_n \rightarrow O_n$)
L	Х	Х	Н	X	no change
L	L	L	L	<i></i>	count-down, decade
L	L	Н	L	5	count-up, decade
L	н	L	L	<i></i>	count-down, binary
L	Н	Н	L	_ر	count-up, binary


Notes

1. H = HIGH state (the more positive voltage)


L = LOW state (the less positive voltage)

X = state is immaterial

✓ = positive-going clock pulse edge

HEF4029B MSI

Logic equation for terminal count:

 $\mathsf{TC} = \overline{\mathsf{CE}} \; (\mathsf{BIN}/\overline{\mathsf{DEC}} \bullet \mathsf{UP}/\overline{\mathsf{DN}} \bullet \mathsf{O}_0 \bullet \mathsf{O}_1 \bullet \mathsf{O}_2 \bullet \mathsf{O}_3 + \mathsf{BIN}/\overline{\mathsf{DEC}} \bullet \overline{\mathsf{UP}/\overline{\mathsf{DN}}} \bullet \overline{\mathsf{O}}_0 \bullet \overline{\mathsf{O}}_1 \bullet \overline{\mathsf{O}}_2 \bullet \overline{\mathsf{O}}_3 + \mathsf{BIN}/\overline{\mathsf{DEC}} \bullet \overline{\mathsf{UP}/\overline{\mathsf{DN}}} \bullet \overline{\mathsf{O}}_0 \bullet \overline{\mathsf{O}}_1 \bullet \overline{\mathsf{O}}_2 \bullet \overline{\mathsf{O}}_3 + \mathsf{BIN}/\overline{\mathsf{DEC}} \bullet \overline{\mathsf{UP}/\overline{\mathsf{DN}}} \bullet \overline{\mathsf{O}}_0 \bullet \overline{\mathsf{O}}_1 \bullet \overline{\mathsf{O}}_2 \bullet \overline{\mathsf{O}}_3 + \mathsf{BIN}/\overline{\mathsf{DEC}} \bullet \overline{\mathsf{UP}/\overline{\mathsf{DN}}} \bullet \overline{\mathsf{UP}}/\overline{\mathsf{DN}} \bullet \overline{\mathsf{UP}}/\overline{\mathsf{DN}} \bullet \overline{\mathsf{UP}}/\overline{\mathsf{DN}} \bullet \overline{\mathsf{UP}}/\overline{\mathsf{UP}}/\overline{\mathsf{DN}} \bullet \overline{\mathsf{UP}}/\overline{\mathsf{DN}} \bullet \overline{\mathsf{UP}}/\overline{\mathsf{DN}} \bullet \overline{\mathsf{UP}}/\overline{\mathsf{UP}}/\overline{\mathsf{DN}} \bullet \overline{\mathsf{UP}}/\overline{\mathsf{UP}}/\overline{\mathsf{UP}}/\overline{\mathsf{UP}}/\overline{\mathsf{UP}}/\overline{\mathsf{UP}}/\overline{\mathsf{UP}}/\overline{\mathsf{UP}}) \bullet \overline{\mathsf{UP}}/\overline{\mathsf{UP$

 $\overline{\overline{\mathsf{BIN}/\overline{\mathsf{DEC}}}\bullet\mathsf{UP}/\overline{\mathsf{DN}}\bullet\mathsf{O}_{0}\bullet\mathsf{O}_{3}}+\overline{\mathsf{BIN}/\overline{\mathsf{DEC}}}\bullet\overline{\mathsf{UP}/\overline{\mathsf{DN}}}\bullet\overline{\mathsf{O}}_{0}\bullet\overline{\mathsf{O}}_{1}\bullet\overline{\mathsf{O}}_{2}\bullet\overline{\mathsf{O}}_{3}\,)$

HEF4029B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	1000 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	4500 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	11 500 f _i + Σ (f _o C _L) × V _{DD} ²	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\Sigma(f_o C_L) = sum of outputs$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.			TRAPOLATION
Propagation delays								
$CP \ \rightarrow O_n$	5			145	290	ns	118 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns +	(0,23 ns/pF) C _L
	15			40	75	ns	32 ns +	(0,16 ns/pF) C _L
	5			160	315	ns	133 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		60	120	ns	49 ns +	(0,23 ns/pF) C _L
	15			40	80	ns	32 ns +	(0,16 ns/pF) C _L
$CP \rightarrow \overline{TC}$	5			280	560	ns	253 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		105	205	ns	94 ns +	(0,23 ns/pF) C _L
	15			70	140	ns	62 ns +	(0,16 ns/pF) C _L
	5			195	385	ns	168 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		75	150	ns	64 ns +	(0,23 ns/pF) C _L
	15			55	105	ns	47 ns +	(0,16 ns/pF) C _L
$PL \rightarrow O_n$	5			120	240	ns	93 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns +	(0,23 ns/pF) C _L
	15			35	70	ns	27 ns +	(0,16 ns/pF) C _L
	5			170	335	ns	143 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65	130	ns	54 ns +	(0,23 ns/pF) C _L
	15			45	90	ns	37 ns +	(0,16 ns/pF) C _L
$\overline{CE} \rightarrow \overline{TC}$	5			180	360	ns	153 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		70	140	ns	59 ns +	(0,23 ns/pF) C _L
	15			50	100	ns	42 ns +	(0,16 ns/pF) C _L
	5			170	335	ns	143 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65	135	ns	54 ns +	(0,23 ns/pF) C _L
	15			50	100	ns	42 ns +	(0,16 ns/pF) C _L

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA	
Output transition times	5			60	120	ns	10 ns +	(1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns +	(0,42 ns/pF) C _L
	15			20	40	ns	6 ns +	(0,28 ns/pF) C _L
	5			60	120	ns	10 ns +	(1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns +	(0,42 ns/pF) C _L
	15			20	40	ns	6 ns +	(0,28 ns/pF) C _L

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN	ТҮР	МАХ	
Minimum clock	5		110	55	ns	
pulse width; LOW	10	t _{WCPL}	35	20	ns	
	15		25	15	ns	
Minimum PL	5		160	80	ns	
pulse width; HIGH	10	t _{WPLH}	55	25	ns	
	15		35	15	ns	
Recovery time	5		150	75	ns	
for PL	10	t _{RPL}	50	25	ns	
	15		35	20	ns	
Set-up times	5		270	135	ns]
$BIN/\overline{DEC}\toCP$	10	t _{su}	90	45	ns	
	15		60	30	ns	
	5		300	150	ns]
$UP/\overline{DN}\toCP$	10	t _{su}	105	55	ns	
	15		75	35	ns	
	5		240	120	ns	
$\overline{CE}\toCP$	10	t _{su}	90	50	ns	
	15		70	40	ns	see also waveforms
	5		70	35	ns	Figs 7 and 8
$P_n\toPL$	10	t _{su}	20	10	ns	
	15		10	5	ns	
Hold times	5		45	-90	ns	
$BIN/\overline{DEC}\toCP$	10	t _{hold}	15	-30	ns	
	15		10	-20	ns	
	5		15	-135	ns	
$UP/\overline{DN}\toCP$	10	t _{hold}	0	-50	ns	
	15		-5	-35	ns	
	5		30	-30	ns	
$\overline{CE}\toCP$	10	t _{hold}	10	-10	ns	
	15		5	-10	ns	
	5		15	-20	ns	
$P_{n} \to PL$	10	t _{hold}	0	-10	ns	
	15		0	-5	ns	
Maximum clock	5		2	4	MHz	
pulse frequency	10	f _{max}	5	10	MHz	
	15		8	15	MHz	

HEF4029B MSI

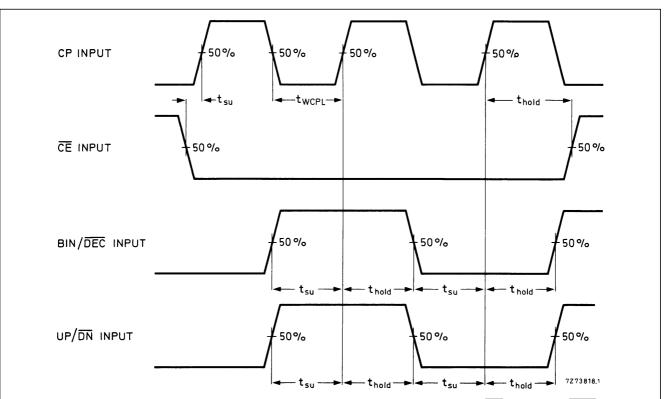
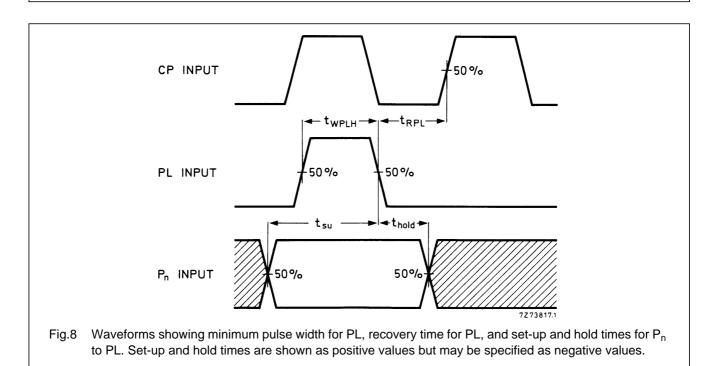
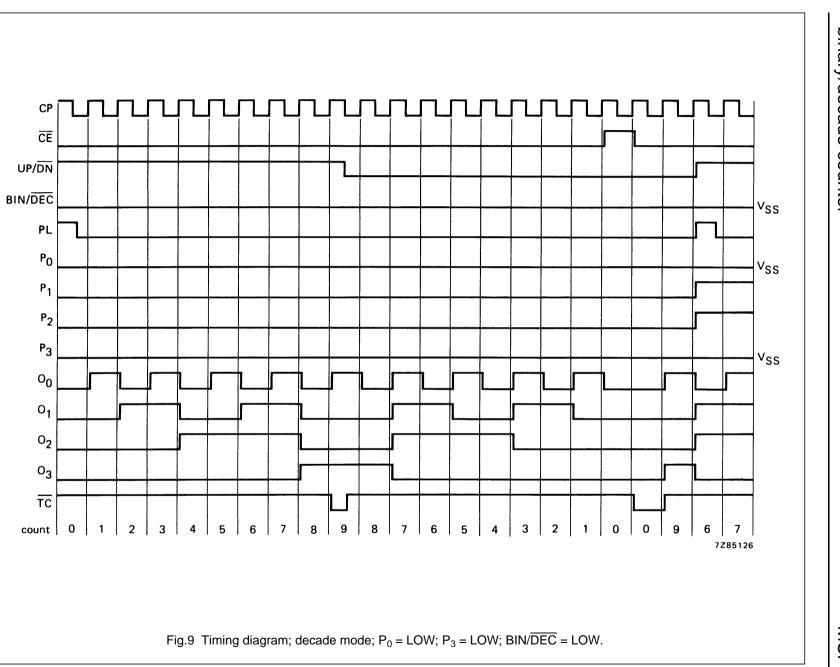



Fig.7 Waveforms showing minimum pulse width for CP, set-up and hold times for CE to CP, BIN/DEC to CP and UP/DN to CP. Set-up and hold times are shown as positive values but may be specified as negative values.



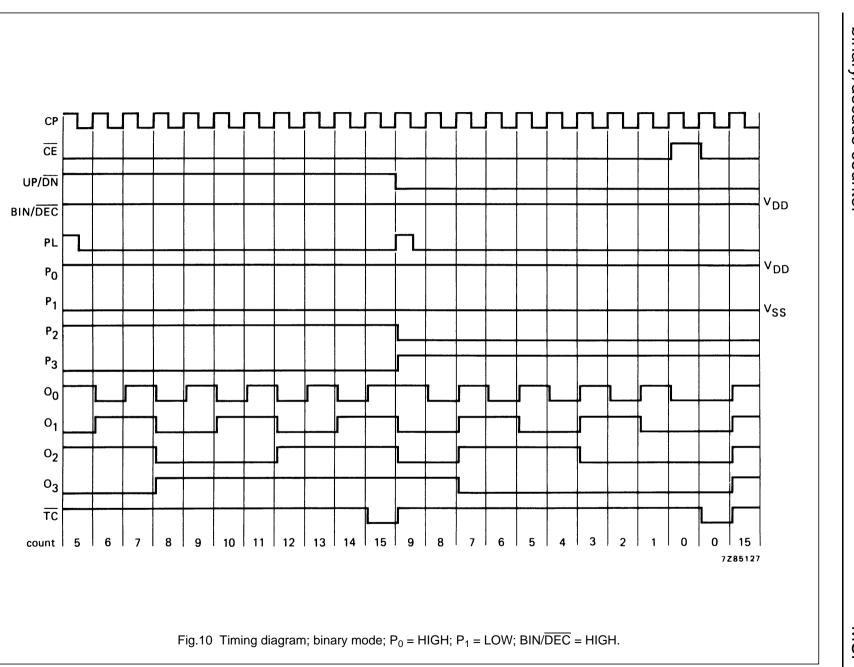
Philips Semiconductors

Product specification

Synchronous up/down counter, binary/decade counter

HEF4029B MSI

_


January 1995

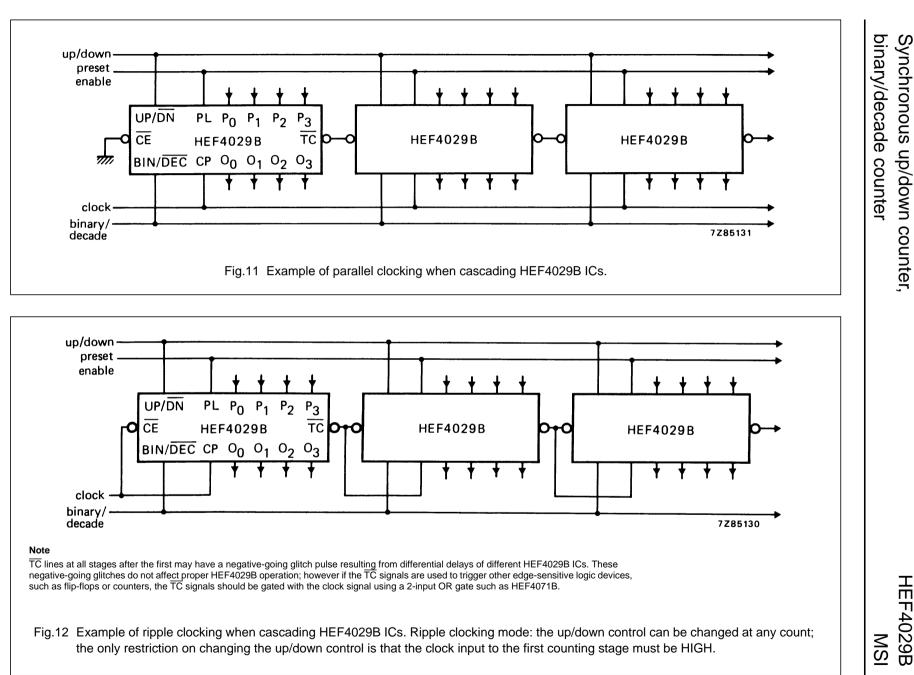
Philips Semiconductors

Product specification

Synchronous up/down counter, binary/decade counter

HEF4029B MSI

_


APPLICATION INFORMATION

Some examples of applications for the HEF4029B are:

- Programmable binary and decade counting/frequency synthesizers BCD output.
- Analogue-to-digital and digital-to-analogue conversion.
- Up/down binary counting.
- Magnitude and sign generation.
- Up/down decade counting.
- Difference counting.

Product specification

Philips Semiconductors

Product specification

14 4