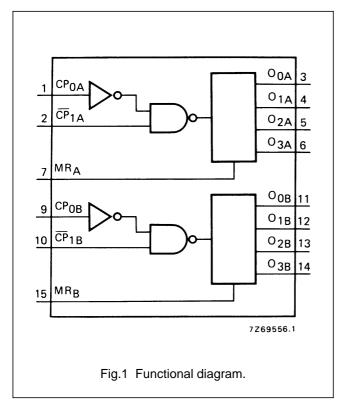

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995


Product specification

HEF4520B MSI

Dual binary counter

DESCRIPTION

The HEF4520B is a dual 4-bit internally synchronous binary counter. The counter has an active HIGH clock input (CP₀) and an active LOW clock input (\overline{CP}_1), buffered outputs from all four bit positions (O₀ to O₃) and an active HIGH overriding asynchronous master reset input (MR). The counter advances on either the LOW to HIGH transition of the CP₀ input if \overline{CP}_1 is HIGH or the HIGH to

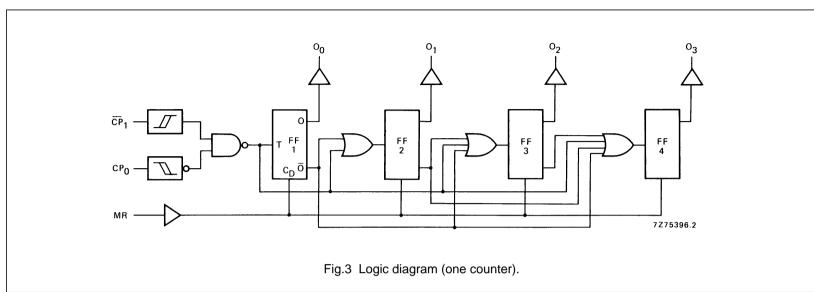
PINNING

CP _{0A} , CP _{0B}	clock inputs (L to H triggered)
$\overline{CP}_{1A}, \overline{CP}_{1B}$	clock inputs (H to L triggered)
MR _A , MR _B	master reset inputs
O _{0A} to O _{3A}	outputs
O_{0B} to O_{3B}	outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

LOW transition of the \overline{CP}_1 input if CP_0 is low. Either CP_0 or \overline{CP}_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on MR resets the counter (O_0 to $O_3 = LOW$) independent of CP_0 , \overline{CP}_1 .


Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

HEF4520BP(N):	16-lead DIL; plastic		
	(SOT38-1)		
HEF4520BD(F):	16-lead DIL; ceramic (cerdip)		
	(SOT74)		
HEF4520BT(D):	16-lead SO; plastic (SOT109-1)		
	(SOT109-1)		
(): Package Designator North America			

January 1995

ω

FUNCTION TABLE

\mathbf{CP}_0		MR	MODE
_ر	Н	L	counter advances
L	~	L	counter advances
ſ	X	L	no change
Х	<u> </u>	L	no change
Г	L	L	no change
Н	∼	L	no change
Х	X	н	O_0 to O_3 = LOW

Notes

- 1. H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)

X = state is immaterial

- \checkmark = positive-going transition
- $\overline{\mathbf{n}}$ = negative-going transition

Philips Semiconductors

Dual binary counter

Product specification

HEF4520B MSI

Dual binary counter

HEF4520B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
CP_0 , $\overline{CP}_1 \rightarrow O_n$	5			110	220	ns	83 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			110	220	ns	83 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$MR \to O_n$	5			75	150	ns	48 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		35	70	ns	24 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
Output transition							
times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
Minimum CP ₀	5		60	30		ns	
pulse width; LOW	10	t _{WCPL}	30	15		ns	
	15		20	10		ns	
Minimum \overline{CP}_1	5		60	30		ns	
pulse width; HIGH	10	t _{WCPH}	30	15		ns	
	15		20	10		ns	
Minimum MR	5		30	15		ns	
pulse width; HIGH	10	t _{WMRH}	20	10		ns	
	15		16	8		ns	see also waveforms
Recovery time	5		50	25		ns	Figs 4 and 5
for MR	10	t _{RMR}	30	15		ns	
	15		20	10		ns	
Set-up times	5		50	25		ns	
$CP_0 \rightarrow \overline{CP}_1$	10	t _{su}	30	15		ns	
	15		20	10		ns	
	5		50	25		ns	1
$\overline{\text{CP}}_1 \to \text{CP}_0$	10	t _{su}	30	15		ns	
-	15		20	10		ns	
Maximum clock	5		8	16		MHz	
pulse frequency	10	f _{max}	15	30		MHz	
· · ·	15		20	40		MHz	

Dual binary counter

HEF4520B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	850 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	3 800 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	10 200 f _i + Σ (f _o C _L) × V _{DD} ²	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\Sigma(f_oC_L) = sum of outputs$
			V _{DD} = supply voltage (V)

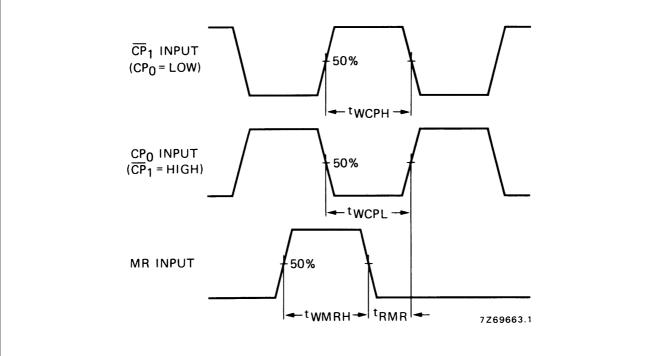
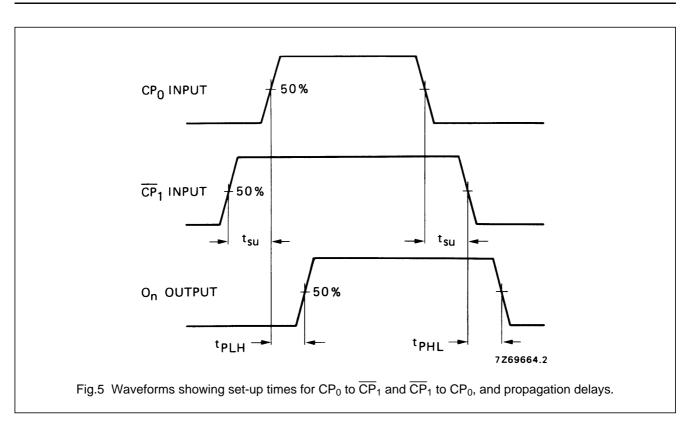
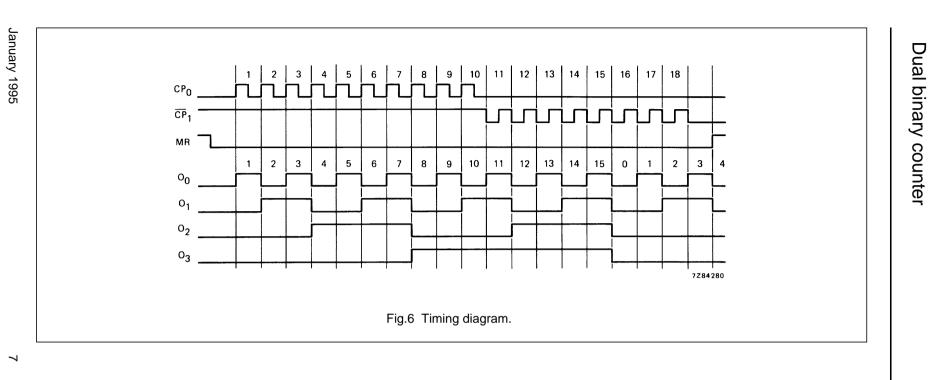



Fig.4 Waveforms showing recovery time for MR; minimum CP_0 , \overline{CP}_1 and MR pulse widths.

Dual binary counter


HEF4520B MSI

Philips Semiconductors

Product specification

HEF4520B ISM

 \neg

_