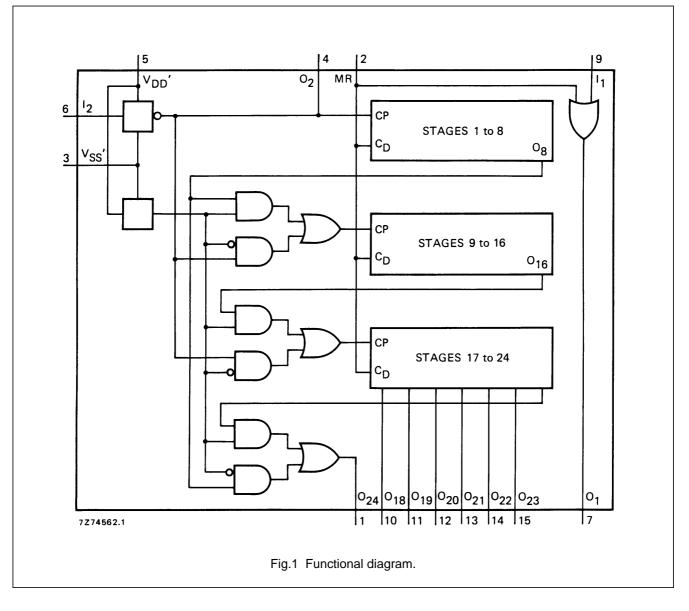

INTEGRATED CIRCUITS

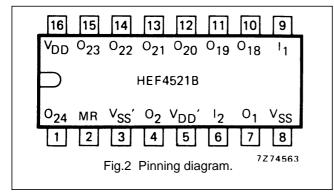
Product specification File under Integrated Circuits, IC04 January 1995



HEF4521B MSI

DESCRIPTION

The HEF4521B consists of a chain of 24 toggle flip-flops with an overriding asynchronous master reset input (MR), and an input circuit that allows three modes of operation. The single inverting stage (I_2/O_2) will function as a crystal oscillator, or in combination with I_1 as an RC oscillator, or as an input buffer for an external oscillator. Low-power


operation as a crystal oscillator is enabled by connecting external resistors to pins 3 (V_{SS} ') and 5 (V_{DD} '). Each flip-flop divides the frequency of the previous flip-flop by two, consequently the HEF4521B will count up to $2^{24} = 16777216$. The counting advances on the HIGH to LOW transition of the clock (I_2). The outputs of the last seven stages are available for additional flexibility.

FAMILY DATA, I_{DD} LIMITS category MSI

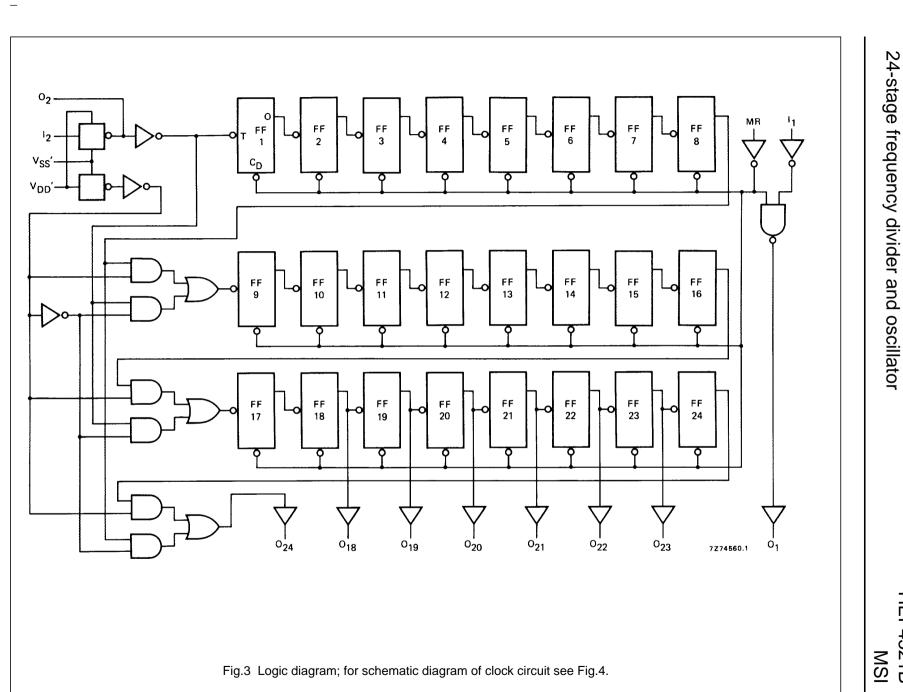
See Family Specifications

HEF4521B MSI

COUNT CAPACITY

OUTPUT	COUNT CAPACITY
O ₁₈	2 ¹⁸ = 262 144
O ₁₉	2 ¹⁹ = 524 288
O ₂₀	2 ²⁰ = 1 048 576
O ₂₁	2 ²¹ = 2 097 152
O ₂₂	2 ²² = 4 194 304
O ₂₃	2 ²³ = 8 388 608
O ₂₄	2 ²⁴ = 16 777 216

HEF4521BP(N): 16-lead DIL; plastic (SOT38-1) HEF4521BD(F): 16-lead DIL; ceramic (cerdip) (SOT74) HEF4521BT(D): 16-lead SO; plastic (SOT109-1) (): Package Designator North America


FUNCTIONAL TEST SEQUENCE

INPUTS		CONTROL TERMINALS			OUTPUTS	REMARKS	
MR	l ₂	O ₂	V _{SS} '	V _{DD} '	O ₁₈ to O ₂₄		
н	L	L	V _{DD}	V _{SS}	L	counter is in three 8-stage sections in parallel mode; I_2 and O_2 are interconnected (O_2 is now input); counter is reset by MR	
L	Л	Л	V _{DD}	V _{SS}	Н	255 pulses are clocked into I_2 , O_2 (the counter advances on the LOW to HIGH transition)	
L	L	L	V _{SS}	V _{SS}	Н	V_{SS} ' is connected to V_{SS}	
L	Н	L	V _{SS}	V _{SS}	Н	the input I ₂ is made HIGH	
L	Н	L	V _{SS}	V _{DD}	н	V_{DD} ' is connected to V_{DD} ; O_2 is now made floating and becomes an output; the device is now in the 2^{24} mode	
L	7		V _{SS}	V _{DD}	L	counter ripples from an all HIGH state to an all LOW state	

A test function has been included for the reduction of the test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections by connecting V_{SS}' to V_{DD} and V_{DD}' to V_{SS}. Via I₂ (connected to O₂) 255 counts are loaded into each of the 8-stage sections in parallel. All flip-flops are now at a HIGH state.

The counter is now returned to the normal 24-stage in series configuration by connecting V_{SS}' to V_{SS} and V_{DD}' to V_{DD}. One more pulse is entered into input I₂, which will cause the counter to ripple from an all HIGH state to an all LOW state.

January 1995

Philips Semiconductors

Product specification

HEF4521B

4

$v_{DD'}$ $v_{DD'}$ v_{DD} v_{DD}

AC CHARACTERISTICS

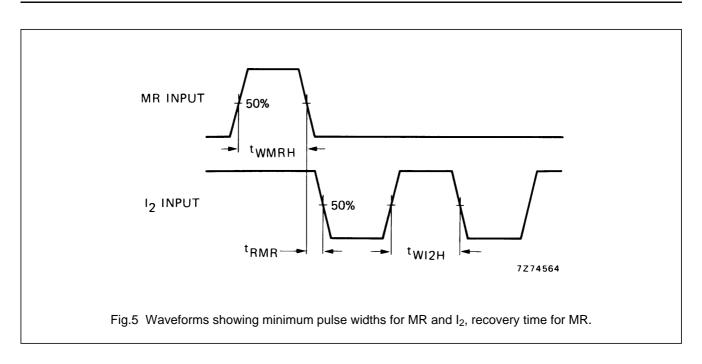
 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA		
Propagation delays									
$I_2 \rightarrow O_{18}$	5			950	1900	ns	923 ns + (0,55 ns/pF) C _L		
HIGH to LOW	10	t _{PHL}		350	700	ns	339 ns + (0,23 ns/pF) C _L		
	15			220	440	ns	212 ns + (0,16 ns/pF) C _L		
	5			950	1900	ns	923 ns + (0,55 ns/pF) C _L		
LOW to HIGH	10	t _{PLH}		350	700	ns	339 ns + (0,23 ns/pF) C _L		
	15			220	440	ns	212 ns + (0,16 ns/pF) C _L		
$O_n \rightarrow O_n + 1$	5			40	80	ns	13 ns + (0,55 ns/pF) C _L		
HIGH to LOW	10	t _{PHL}		15	30	ns	4 ns + (0,23 ns/pF) C _L		
	15			10	20	ns	2 ns + (0,16 ns/pF) C _L		
	5			40	80	ns	13 ns + (0,55 ns/pF) C _L		
LOW to HIGH	10	t _{PLH}		15	30	ns	4 ns + (0,23 ns/pF) C _L		
	15			10	20	ns	2 ns + (0,16 ns/pF) C _L		
$MR \rightarrow O_n$	5			120	240	ns	93 ns + (0,55 ns/pF) C _L		
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L		
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L		
$I_1 \rightarrow O_1$	5			90	180	ns	63 ns + (0,55 ns/pF) C _L		
HIGH to LOW	10	t _{PHL}		35	70	ns	24 ns + (0,23 ns/pF) C _L		
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L		
	5			60	120	ns	33 ns + (0,55 ns/pF) C _L		
LOW to HIGH	10	t _{PLH}		30	60	ns	19 ns + (0,23 ns/pF) C _L		
	15			20	40	ns	12 ns + (0,16 ns/pF) C _L		

HEF4521B MSI

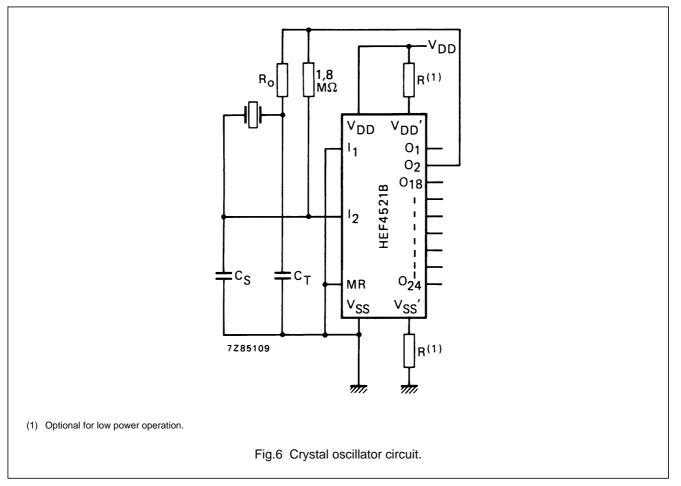
HEF4521B MSI

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA		
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L		
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L		
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L		
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L		
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L		
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L		


AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

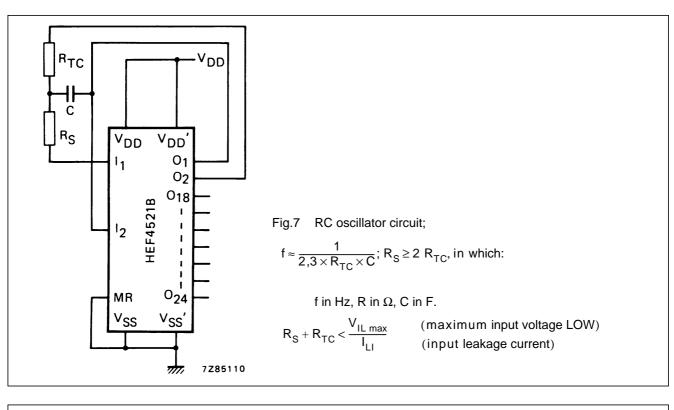
	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Minimum I ₂ pulse	5		80	40	ns	
width; HIGH	10	t _{WI2H}	40	20	ns	
	15		30	15	ns	
Minimum MR	5		70	35	ns	
pulse width; HIGH	10	t _{WMRH}	40	20	ns	see also waveforms Fig.5
	15		30	15	ns	i ig.o
Recovery time	5		20	-10	ns	
for MR	10	t _{RMR}	15	-5	ns	
	15		15	0	ns	
Maximum clock	5		6	12	MHz	
pulse frequency	10	f _{max}	12	25	MHz	
	15		17	35	MHz	

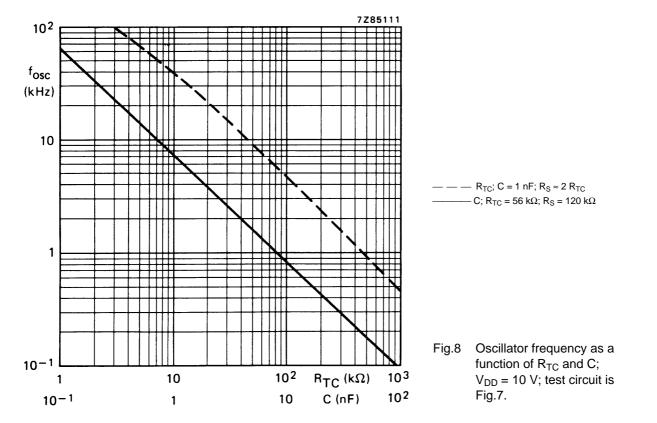

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	1 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	5 100 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	13 050 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

HEF4521B MSI

HEF4521B MSI

APPLICATION INFORMATION

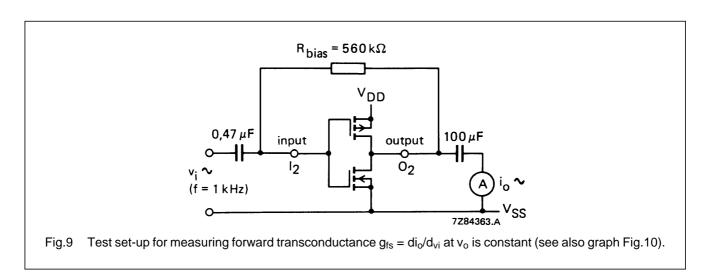

Typical characteristics for crystal oscillator circuit (Fig.6):


	500 kHz CIRCUIT	50 kHz CIRCUIT	UNIT
Crystal characteristics			
resonance frequency	500	50	kHz
crystal cut	S	N	_
equivalent resistance; R _S	1	6,2	kΩ
External resistor/capacitor values			
R _o	47	750	kΩ
C _T	82	82	pF
C _S	20	20	pF

HEF4521B

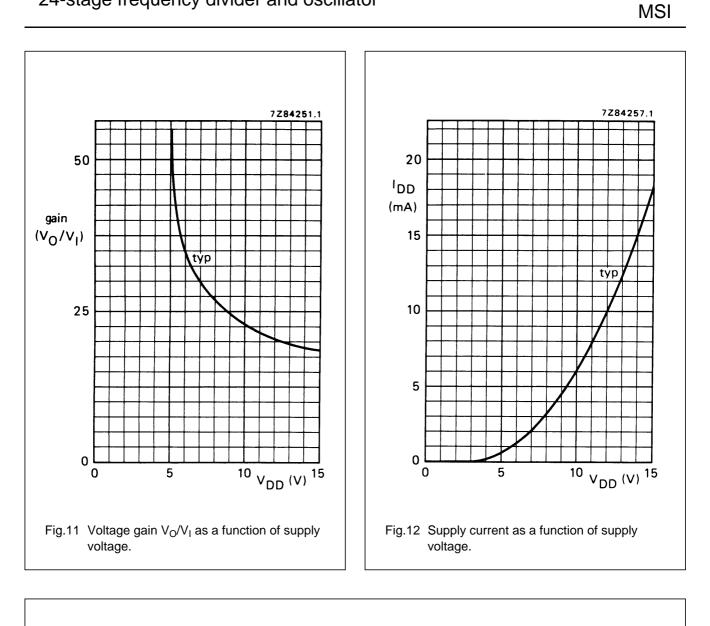
MSI

24-stage frequency divider and oscillator



HEF4521B

MSI


24-stage frequency divider and oscillator

HEF4521B

24-stage frequency divider and oscillator

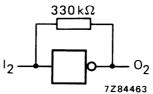


Fig.13 Test set-up for measuring graphs of Figs 11 and 12.