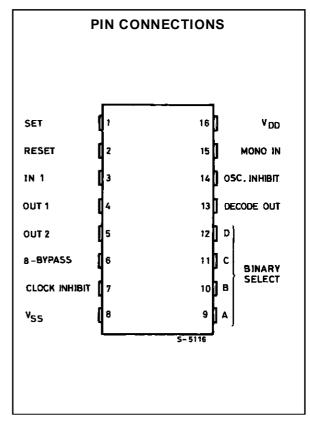
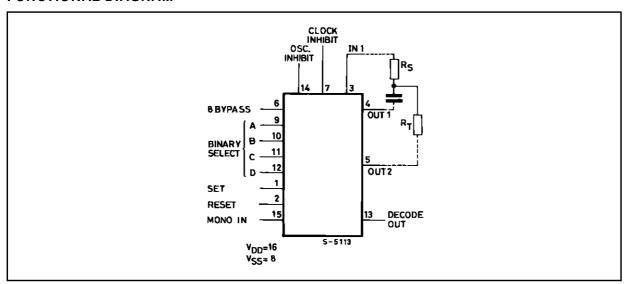

HCC/HCF4536B


PROGRAMMABLE TIMER

- 24 FLIP-FLOP STAGES COUNTS FROM 2^{0} TO 2^{24}
- LAST 16 STAGES SELECTABLE BY BCD SE-LECT CODE
- BYPASS INPUT ALLOWS BYPASSING FIRST 8 STAGES
- ON-CHIP RC OSCILLATOR PROVISION
- CLOCK INHIBIT INPUT
- SCHMITT-TRIGGER IN CLOCK LINE PER-MITS OPERATION WITH VERY LONG RISE AND FALL TIMES
- ON-CHIP MONOSTABLE OUTPUT PROVI-SION
- TYPICAL f_{CL} = 3MHz AT V_{DD} = 10V
 TEST MODE ALLOWS FAST TEST SE-QUENCE
- SET AND RESET INPUTS
- CAPABLE OF DRIVING TWO LOW POWER LOWER-POWER TTL LOADS. ONE SCHOTTKY LOAD, OR TWO HTL LOADS OVER THE RATED TEMPERATURE RANGE
- STANDARDIZED, SYMMETRICAL OUTPUT **CHARACTERISTICS**
- QUIESCENT CURRENT AT 20V FOR HCC DE-
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100 nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4536B (extended temperature range) and HCF4536B (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package. The HCC/HCF4536B is a programmable timer consisting of 24 ripple-binary counter stages. The salient feature of this device is its flexibility. The device can count from 1 to 224 or the first 8 stages can be bypassed to allow an output, selectable by a 4-bit code, from any one of the remaining 16 stages. It can be driven by an external clock or an RC oscillator that can be constructed using on-chip components.

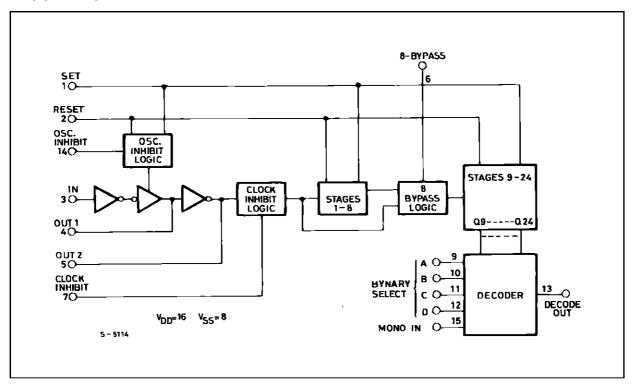


November 1996 1/17 Input IN1 serves as either the external clock input or the input to the on-chip RC oscillator. OUT1 and OUT2 are connection terminals for the external RC components. In addition, an on-chip monostable circuit is provided to allow a variable pulse width output. Various timing functions can be achieved using combinations of these capabilities. A logic 1 on the 8-BYPASS input enables a bypass of the first 8 stages and makes stage 9 the first counter stage of the last 16 stages. Selection of 1 of 16 outputs is accomplished by the decoder and the BCD inputs A, B, C

and D. MONO IN is the timing input for the on-chip monostable oscillator. Grounding of the MONO IN terminal through a resistor of $10 \mathrm{K}\Omega$ or higher, disables the one-shot circuit and connects the decoder directly to the DECODE OUT terminal. A resistor to V_{DD} and a capacitor to ground from the MONO IN terminal enables the one-shot circuit and controls its pulse width. A fast test mode is enabled by a logic 1 on 8-BYPASS, SET, and RESET. This mode divides the 24-stage counter into three 8-stage sections to facilitate a fast test sequence.

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_{1}	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T _{op} = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

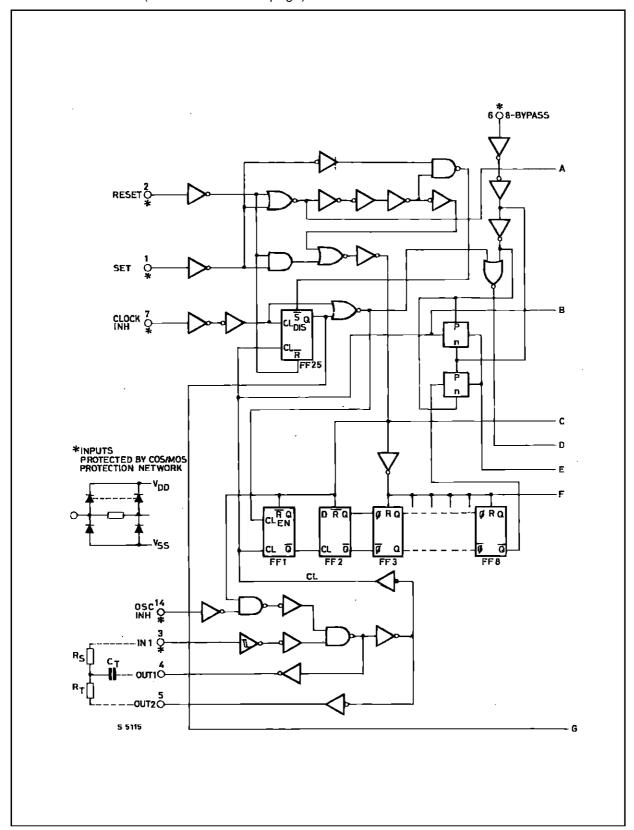
* All voltages are with respect to V_{SS} (GND).

BLOCK DIAGRAM

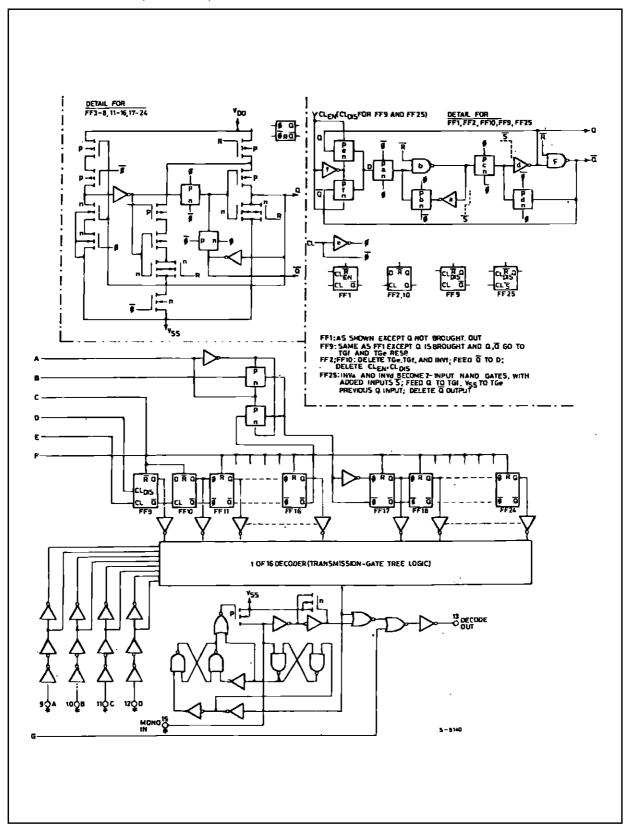
TRUTH TABLE

In1	Set	Reset	Clock Inh	Osc Inh	Out1	Out2	Decode Out
	0	0	0	0		7	No Change
	0	0	0	0			Advance to Next State
Х	1	0	0	0	0	1	1
Х	0	1	0	0	0	1	0
Х	0	0	1	0			No Change
0	0	0	0	Х	0	1	No Change
1	0	0	0		_		Advance to Next State

0 = Low Level


DECODE OUT SELECTION TABLE

D	С	В	Α	Number or Stages In Divider Chain			
				8-BYPASS = 0	8-BYPASS = 1		
0	0	0	0	9	1		
0	0	0	1	10	2		
0	0	1	0	11	3		
0	0	1	1	12	4		
0	1	0	0	13	5		
0	1	0	1	14	6		
0	1	1	0	15	7		
0	1	1	1	16	8		
1	0	0	0	17	9		
1	0	0	1	18	10		
1	0	1	0	19	11		
1	0	1	1	20	12		
1	1	0	0	21	13		
1	1	0	1	22	14		
1	1	1	0	23	15		
1	1	1	1	24	16		

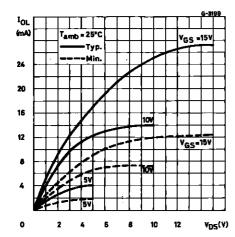

0 = Low Level

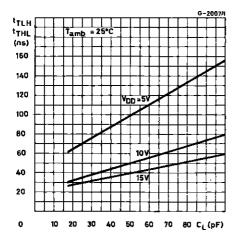
LOGIC DIAGRAMS (continued on next page)

LOGIC DIAGRAMS (continued)

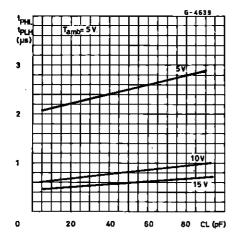
STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

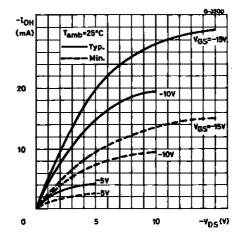
			Test Conditions			Value								
Symbol	nbol Parameter		٧ı	۷o	I ₀	V _{DD}	ΤL	ow*		25°C		T _H	igh*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		.) 00	0/15			15		80		0.04	80		600	
V _{OH}	Output High	n	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V_{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}				4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	– 2		- 1.6	- 3.2		- 1.15		
	Drive Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51			- 0.36	-	
	• • • • • • • • • • • • • • • • • • • •	Types	0/10	9.5		10	- 1.6		- 1.3			- 0.9		
			0/15	13.5		15	- 4.2		- 3.4			- 2.4		mA
			0/ 5	2.5		5	– 1.53			- 3.2		- 1.1		
		HCF	0/ 5	4.6		5	- 0.52		- 0.44			- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1			- 0.9		
			0/15	13.5		15	- 3.6		- 3.0			- 2.4		
I _{OL}	Output Sink	нсс	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Current	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
			0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		HCF	0/ 5	0.4		5	0.52		0.44	1		0.36		
		Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input HCC Leakage Types		0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ
	Current	HCF Types	0/15	-		15		± 0.3		±10 ⁻⁵			± 1	·
Cı	Input Capa	citance		Any In	put					5	7.5			pF

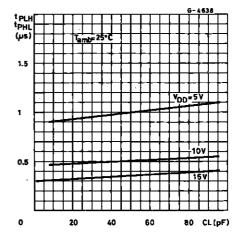

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device: -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device: $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is: 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5 V min. with $V_{DD} = 15V$.

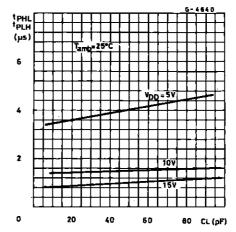

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , typical temperature coefficent for all V_{DD} values is 03 %/°C, all input rise and fall times= 20 ns)

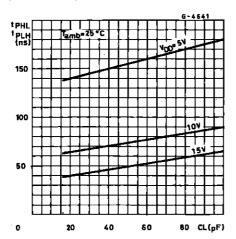
Symbol	Parameter	Test Conditions		Value			
Зуньон	Farameter	V _{DD} (V) Min.	Тур.	Max.	Unit	
t _{PLH}	Propagation Delay Time	5		1	2		
tphL	Clock to Q1, 8-bypass High	10		0.5	1	μs	
		15		0.35	0.7		
	Clock to Q1, 8-bypass Low	5		2.5	5		
		10		0.8	1.6	μs	
		15		0.6	1.2		
	Clock to Q16	5		4	8		
		10		1.5	3	μs	
		15		1	2		
	Q_n to Q_{n+1}	5		150	300		
		10		75	150	ns	
		15		50	100		
t _{PLH}	Propagation Delay Time	5		300	600		
		10		125	250	ns	
		15		80	160		
t _{PHL}	Reset to Qn	5		3	6		
		10		1	2	μs	
		15		0.75	1.5	1	
t⊤∟H	Transition Time	5		100	200		
t _{THL}		10		50	100	ns	
		15		40	80	1	
tw	Pulse Width	5		200	400		
	Clock	10		75	150	ns	
		15		50	100		
	Set	5		200	400		
		10		100	200	ns	
		15		60	120		
	Reset	5		3	6		
		10		1	2	με	
		15		0.75	1.5		
	Recovery Time	5		2.5	5		
	Set	10		1	2	μs	
		15		0.6	1.6		
	Reset	5		3.5	7		
		10		1.5	3	μs	
		15		1	2		
t _r , t _f	Clock Input Rise or Fall Time	5					
		10		Unlimted	b	μs	
		15					
f _{CL}	Maximum Clock Input Frequency		0.5	1			
	,	10	1.5	3		MH	
		15	2.5	5		1	

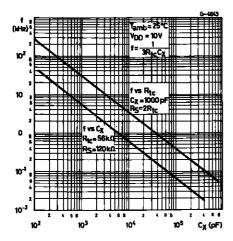

Output Low (sink) Current Characteristics.

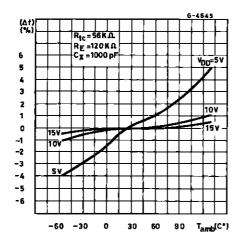

Typical Transition Time vs. Load Capacitance.

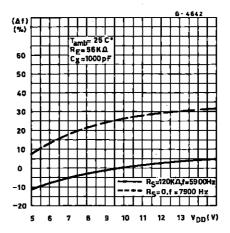

Typical Propagation Delay Time vs. Load Capacitance (Clock to Q1, 8 Bypass low).

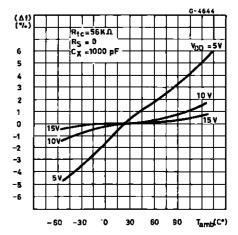

Output High (source) Current Characteristics.

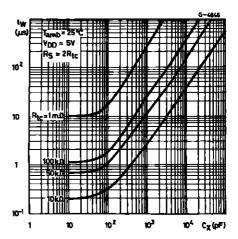

Typical Propagation Delay Time vs. Load Capacitance (clock to Q1, 8 Bypass high).

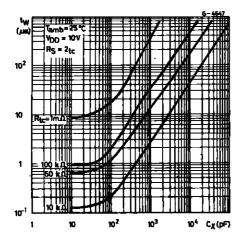

Typical Propagation Delay Time vs. Load Capacitance (Clock to Q16, 8 Bypass high).

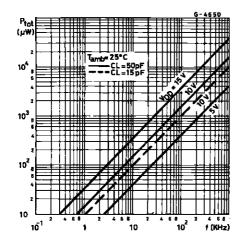

Typical Propagation Delay Time vs. Load Capacitance (Q_N to Q_{N+1}).


Typical RC Oscillator Frequency Deviation vs. Time Constant Resistance and Capacitance.

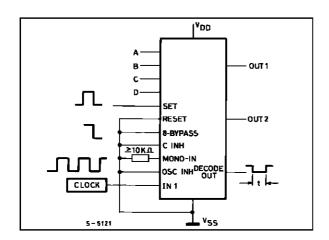

Typical RC Oscillator Frequency Deviation vs. Ambient Temperature ($R_S = 120K\Omega$).

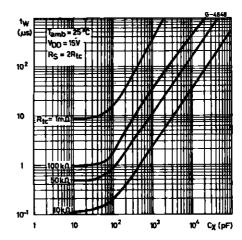

Typical RC Oscillator Frequency Deviation vs. Supply Voltage.


Typical RC Oscillator Frequency Deviation vs. Ambient Temperature ($R_S = 0$).

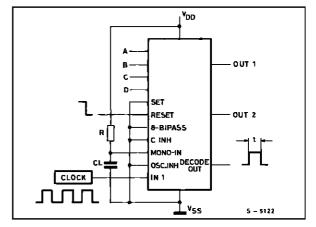

Typical Pulse Width vs. External Capacitance $(V_{DD} = 5V)$.

Typical Pulse Width vs. External Capacitance $(V_{DD} = 10V)$.

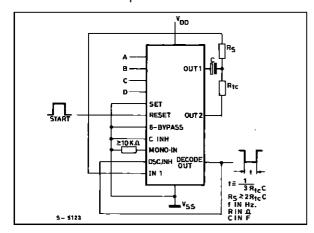

Typical Dynamic Power Dissipation vs. Input Pulse Frequency.


TYPICAL APPLICATIONS

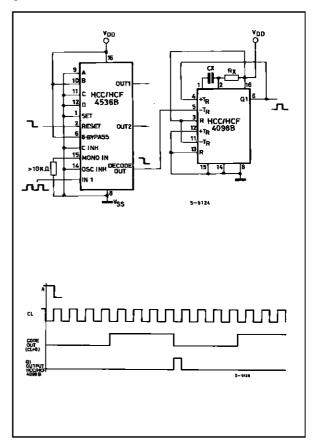
10/17


Time Internal Configuration Using External Clock; Set and Clock Inhibit Functions.

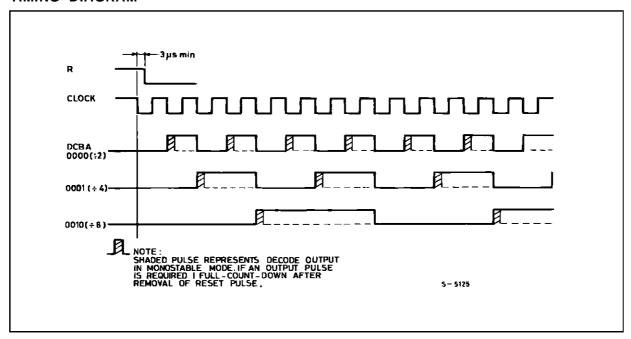
Typical Pulse Width vs. External Capacitance $(V_{DD} = 15V)$.



Time Internal Configuration Using External Clock; Reset and Output Monostable to Achieve a Pulse Output.



TYPICAL APPLICATIONS (Continued)

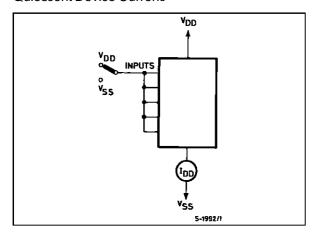

Time Internal Configuration Using Onchip RC Oscillator and Reset Input to Initiate Time Interval.

Application Showing Use of 4098B and 4536B to get Decode Pulse 8 Clock Pulses after Reset

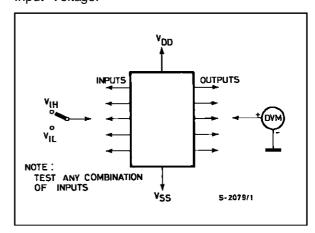
TIMING DIAGRAM

	Functional Test Sequence								
		Inputs		Outputs	Comments				
In1	Set	Reset	8-Bypass	Decade Out Q1 Thru Q24	All 24 steps are in reset mode.				
1	0	1	1	0					
1	1	1	1	0	Counter is in three 8-stage section in parallel mode.				
0	1	1	1	0	First "1" to "0" Transition of Clock				
1 0 - -	1	1	1		255 "1" to "0" transitions are clocked in the counter.				
0	1	1	1	1	The 255 "1" to "0" Transition				
0	0	0	0	1	Counter converted back to 24 stages in series mode. Set and Reset must be connected together and simultaneoulsy go from "1" to "0".				
1	0	0	0	1	In ₁ switches to a "1".				
0	0	0	0	0	Counter Ripples from an all "1" state to an all "0" state.				

FUNCTIONAL TEST SEQUENCE

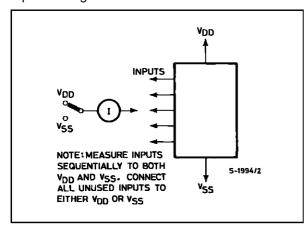

Test Function has been included for the reduction of test time required to exercise all 24 counter stages.

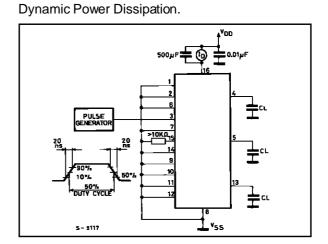
This test function divides the counter into three 8-stage section and 255 counts are loaded in each of the 8-stage sections in parallel. All flip-flops are now

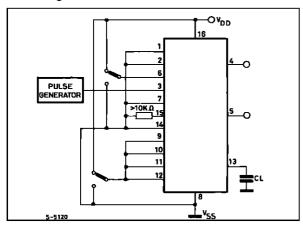

at a "1". The counter is now returned to the normal 24-steps in series configuration. One more pulse is entered into In_1 which will cause the counter to ripple from an all "1" state to an all "0" state.

TEST CIRCUITS

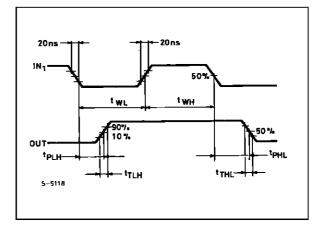
Quiescent Device Current.

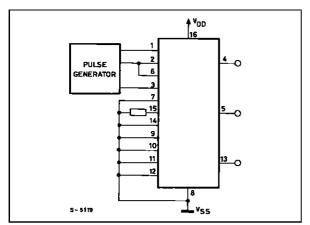



Input Voltage.

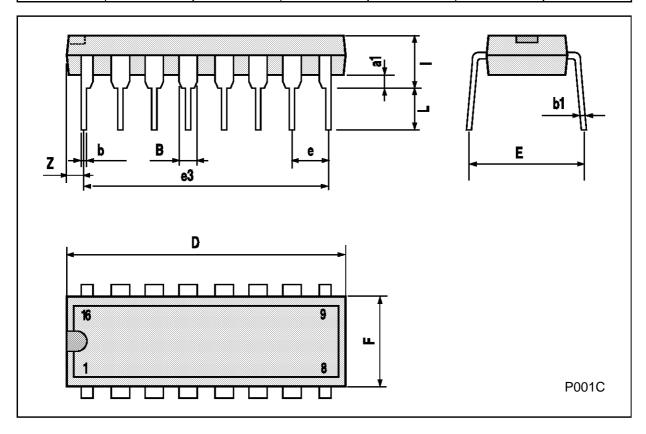

TEST CIRCUITS (continued)

Input Leakage Current.

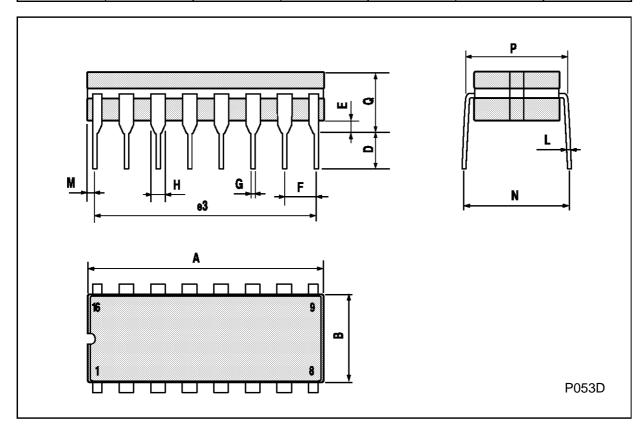



Switching Time.

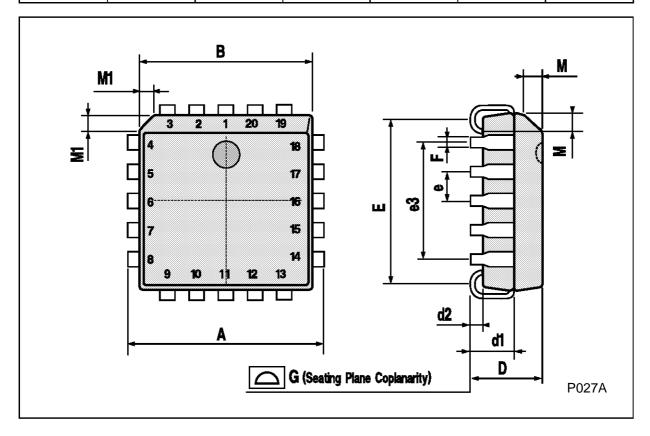
Input Waveforms for Switching-Time.



Functional.


Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		


Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7			0.276	
D		3.3			0.130		
E	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1996 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.