

SMALL SIGNAL SCHOTTKY DIODE

DESCRIPTION

General purpose metal to silicon diode featuring very low turn-on voltage and fast switching.

This device has integrated protection against excessive voltage such as electrostatic discharges.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
V_{RRM}	Repetitive Peak Reverse Voltage	100	V	
I _F	Forward Continuous Current*	100	mA	
I _{FRM}	$\begin{array}{ll} \text{Repetitive Peak Forward Current*} & & t_p \leq 1s \\ & \delta \leq 0.5 \end{array}$		350	mA
I_{FSM}	Surge non Repetitive Forward Current* $t_p \le 10 ms$		750	mA
P_{tot}	Power Dissipation*	100	mW	
$T_{stg} \ T_{j}$	Storage and Junction Temperature Range	- 65 to +150 - 65 to +125	°C °C	
T_L	Maximum Lead Temperature for Soldering de from Case	230	°C	

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
$R_{th(j-a)}$	Junction-ambient*	300	°C/W

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol	Test Conditions			Тур.	Max.	Unit
V_{BR}	$T_j = 25^{\circ}C$ $I_R = 100\mu A$		100			V
V _F * *	$T_j = 25^{\circ}C$ $I_F = 1mA$			0.4	0.45	V
	$T_j = 25^{\circ}C$ $I_F = 200mA$				1	
I _R * *	$T_j = 25^{\circ}C$ V_R	2 = 50V			0.1	μΑ
	$T_j = 100^{\circ}C$				20	

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions			Min.	Тур.	Max.	Unit
С	T _j = 25°C	$V_R = 1V$	f = 1MHz		2		pF

^{*} On infinite heatsink with 4mm lead length * * Pulse test: $t_p \! \leq \! 300 \mu s \; \; \delta < \! 2\%$.

August 1999 Ed: 1A 1/4

Figure 1. Forward current versus forward voltage at different temperatures (typical values).

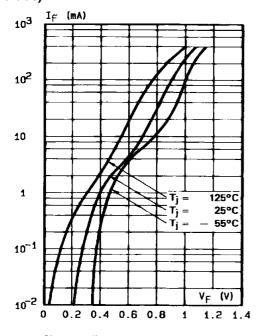


Figure 2. Forward current versus forward voltage (typical values).

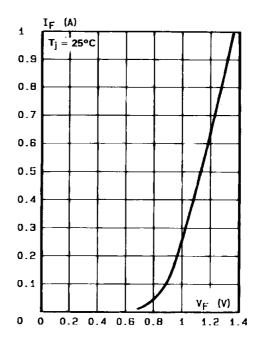


Figure 3. Reverse current versus junction temperature.

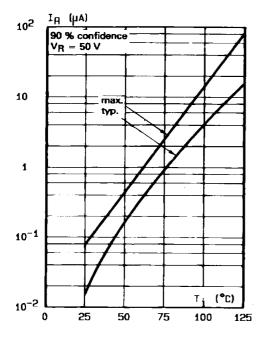
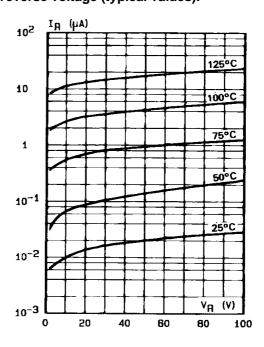
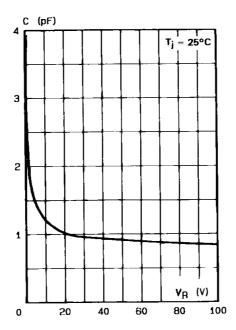




Figure 4. Reverse current versus continuous reverse voltage (typical values).

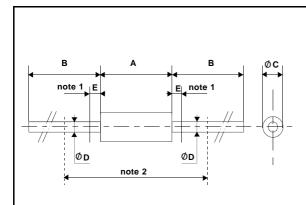

5/

Figure 5. Capacitance C versus reverse applied voltage $V_{\mbox{\scriptsize R}}$ (typical values).

PACKAGE MECHANICAL DATA

DO 35 Glass

	DIMENSIONS					
REF.	Millimeters		Inc	hes		
	Min.	Max.	Min.	Max.		
Α	3.05	4.50	0.120	0.177		
В	1.53	2.00	0.060	0.079		
С	12.7		0.500			
D	0.458	0.558	0.018	0.022		

Cooling method: by convection and conduction Marking: clear, ring at cathode end. Weight: 0.15g

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval

of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com