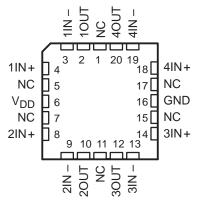
- Trimmed Offset Voltage:
 - TLC279 . . . 900 μ V Max at 25°C, V_{DD} = 5 V
- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:

0°C to 70°C . . . 3 V to 16 V -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 4 V to 16 V

- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Versions)
- Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input Impedance . . . 10¹² Ω Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-In Latch-Up Immunity

description

The TLC274 and TLC279 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.


These devices use Texas Instruments silicon-gate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC274 (10 mV) to the high-precision TLC279 (900 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

D, J, N, OR PW PACKAGE (TOP VIEW)



FK PACKAGE (TOP VIEW)

NC - No internal connection

DISTRIBUTION OF TLC279 INPUT OFFSET VOLTAGE

LinCMOS is a trademark of Texas Instruments Incorporated.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

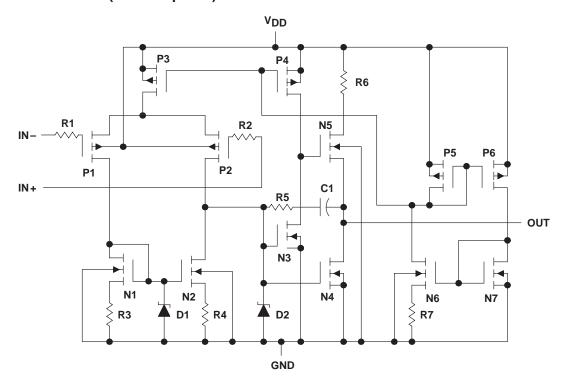
description (continued)

In general, many features associated with bipolar technology are available on LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC274 and TLC279. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC274 and TLC279 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

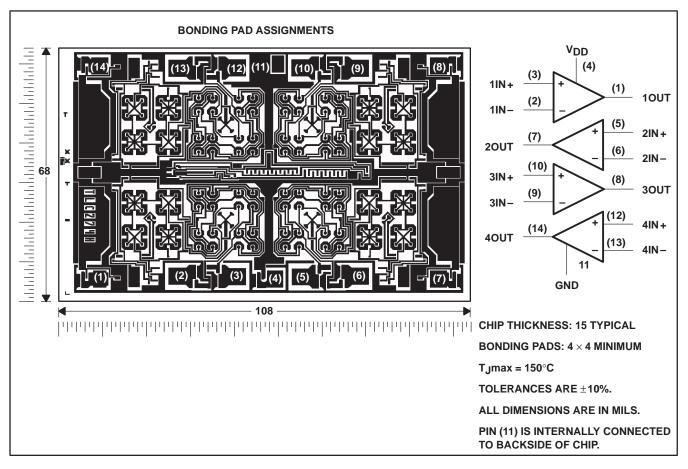

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

AVAILABLE OPTIONS

			PA	CKAGED DEV	ICES		CHIP
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)	TSSOP (PW)	FORM (Y)
	900 μV	TLC279CD	_	_	TLC279CN	_	_
0°C to 70°C	2 mV 5 mV 10 mV	TLC274BCD TLC274ACD TLC274CD	_ _ _	_ _ _	TLC274BCN TLC274ACN TLC274CN	— — TLC274CPW	— — TLC274Y
-40°C to 85°C	900 μV 2 mV 5 mV 10 mV	TLC279ID TLC274BID TLC274AID TLC274ID	_ _ _ _		TLC279IN TLC274BIN TLC274AIN TLC274IN	— — — —	
-55°C to 125°C	900 μV 10 mV	TLC279MD TLC274MD	TLC279MFK TLC274MFK	TLC279MJ TLC274MJ	TLC279MN TLC274MN		

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC279CDR).

equivalent schematic (each amplifier)



TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

TLC274Y chip information

These chips, when properly assembled, display characteristics similar to the TLC274C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Input voltage range, V _I (any input)	
Input current, I ₁	
Output current, I _O (each output)	±30 mA
Total current into V _{DD}	
Total current out of GND	45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature, T _A : C suffix	0°C to 70°C
operating need an temperature, 1A. o comb.	
I suffix	
	–40°C to 85°C
I suffix	–40°C to 85°C –55°C to 125°C
I suffix	40°C to 85°C 55°C to 125°C 65°C to 150°C
I suffix	40°C to 85°C 55°C to 125°C 65°C to 150°C 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at the noninverting input with respect to the inverting input.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW	_
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
N	1575 mW	12.6 mW/°C	1008 mW	819 mW	_
PW	700 mW	5.6 mW/°C	448 mW	_	_

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}		3	16	4	16	4	16	V
Common mode input voltage V/o	V _{DD} = 5 V	-0.2	3.5	-0.2	3.5	0	3.5	V
Common-mode input voltage, V _{IC}	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	V
Operating free-air temperature, TA	_	0	70	-40	85	-55	125	°C

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	T _A †	TLC274 TLC274	C, TLC2		UNIT
					"	MIN	TYP	MAX	
		TLC274C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC274C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
		TLC274AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	IIIV
\/.a	Input offset voltage	TLCZ/4AC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
VIO	Input offset voltage	TLC274BC	V _O = 1.4 V,	V _{IC} = 0,	25°C		340	2000	
		TLC2/4BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	μV
		TLC279C	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	μν
		TLC279C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1500	
0),110	Average temperature coeffic	ient of input			25°C to		1.8		μV/°C
αΛΙΟ	offset voltage				70°C		1.0		μν/ Ο
110	Input offset current (see Note	e 4)	V _O = 2.5 V,	V _{IC} = 2.5 V	25°C		0.1		pА
10	mpat onoct danont (odo rtot		VO = 2.0 V,	VIC = 2.0 V	70°C		7	300	Ρ, τ
I _{IB}	Input bias current (see Note	4)	V _O = 2.5 V,	V _{IC} = 2.5 V	25°C		0.6		pА
ΊΒ	input bias current (see Note	٦)	V() = 2.0 V,	VIC = 2.0 V	70°C		40	600	P/ \
						-0.2	-0.3		
	On the second se				25°C	to 4	to 4.2		V
VICR	Common-mode input voltage (see Note 5)	e range				-0.2	7.2		
	(555 11515 5)				Full range	to			V
						3.5			
					25°C	3.2	3.8		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	3	3.8		V
					70°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	5	23		
AVD	Large-signal differential volta amplification	age	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	0°C	4	27		V/mV
	amplification				70°C	4	20		
					25°C	65	80		
CMRR	Common-mode rejection ration	o	V _{IC} = V _{ICR} min		0°C	60	84		dB
					70°C	60	85		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio)	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	0°C	60	94		dB
	$(\Delta V_{DD}/\Delta V_{IO})$			-	70°C	60	96		
					25°C		2.7	6.4	
I _{DD}	Supply current (four amplifie	rs)	V _O = 2.5 V, No load	$V_{IC} = 2.5 V$,	0°C		3.1	7.2	mA
	•		INO IOAU		70°C		2.3	5.2	
				-					

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †	TLC274	C, TLC2		UNIT
		_				MIN	TYP	MAX	
		TLC274C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1102740	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	m\/
		TLC274AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
\/. -	lanut offeet voltege	TLCZ/4AC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
VIO	Input offset voltage	TI C074DC	V _O = 1.4 V,	V _{IC} = 0,	25°C		390	2000	
		TLC274BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	/
		TLC279C	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μV
		1102/90	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1900	
CV // C	Average temperature coe	fficient of			25°C to		2		μV/°C
αVIO	input offset voltage				70°C				μν/ С
IIO	Input offset current (see N	lote 4)	V _O =.5 V,	V _{IC} = 5 V	25°C		0.1		pА
10	input onset ourrent (see 1	1010 4)	V() =.5 V,	VIC = 0 V	70°C		7	300	P/ι
I _{IB}	Input bias current (see No	nte 4)	V _O = 5 V,	V _{IC} = 5 V	25°C		0.7		pА
'IB	input bias current (see 140	71C 4)	VO = 5 V,	VIC = 3 V	70°C		50	600	PΑ
						-0.2	-0.3		
	0 1 1				25°C	to 9	to 9.2		V
VICR	Common-mode input volta (see Note 5)	age range				-0.2	9.2		
	(000 11010 0)				Full range	to			V
						8.5			
					25°C	8	8.5		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	7.8	8.5		V
					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
A _{VD}	Large-signal differential vo amplification	oltage	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	0°C	7.5	42		V/mV
	amplification				70°C	7.5	32		
					25°C	65	85		
CMRR	Common-mode rejection	ratio	V _{IC} = V _{ICR} min		0°C	60	88		dB
					70°C	60	88		
					25°C	65	95		
kSVR	Supply-voltage rejection r	atio	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	0°C	60	94		dB
••••	$(\Delta V_{DD}/\Delta V_{IO})$			•	70°C	60	96		
					25°C		3.8	8	
I _{DD}	Supply current (four ampl	ifiers)	$V_0 = 5 V$	$V_{IC} = 5 V$,	0°C		4.5	8.8	mA
		,	No load		70°C		3.2	6.8	
							J.L	5.5	

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

electrical characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 5 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †		4I, TLC2 4BI, TL0		UNIT
						MIN	TYP	MAX	
		TLC274I	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		11.02741	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			13	mV
		TLC274AI	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mv
V. 0	Input offeet voltage	TLC274AI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			7	
VIO	Input offset voltage	TLC274BI	V _O = 1.4 V,	V _{IC} = 0,	25°C		340	2000	
		TLC2/4BI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	/
		TI C2701	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	μV
		TLC2791	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2000	
αγιο	Average temperature coe offset voltage	efficient of input			25°C to 85°C		1.8		μV/°C
	land offer a comment for a N	M-1- 4)	V 0.5.V	V 0.5.V	25°C		0.1		A
IO	Input offset current (see N	Note 4)	$V_0 = 2.5 V,$	$V_{IC} = 2.5 V$	85°C		24	1000	pΑ
			V 0.5.V	\\ 0.5\\	25°C		0.6		
IB	Input bias current (see No	ote 4)	$V_0 = 2.5 V$,	$V_{IC} = 2.5 V$	85°C		200	2000	pΑ
	Common-mode input volt	range range			25°C	-0.2 to 4	-0.3 to 4.2		V
VICR	(see Note 5)	ago rango			Full range	-0.2 to 3.5			V
					25°C	3.2	3.8		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	-40°C	3	3.8		V
					85°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
					25°C	5	23		
AVD	Large-signal differential v amplification	oltage	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	3.5	32		V/mV
	ampimoation				85°C	3.5	19		
					25°C	65	80		
CMRR	Common-mode rejection	ratio	$V_{IC} = V_{ICR}min$		-40°C	60	81		dB
					85°C	60	86		
					25°C	65	95		
ksvr	Supply-voltage rejection ι (ΔVDD/ΔVIO)	ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	-40°C	60	92		dB
	עביעטעיבי)				85°C	60	96		
			V 0.5.V	V 05V	25°C		2.7	6.4	
I_{DD}	Supply current (four ampl	lifiers)	V _O = 2.5 V, No load	$V_{IC} = 2.5 V,$	-40°C		3.8	8.8	mA
			1.5.500		85°C		2.1	4.8	

[†]Full range is -40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

No. No		PARAMETER		TEST CONI	DITIONS	T _A †		4I, TLC2 4BI, TL0		UNIT
No supply of the section of the se							MIN	TYP	MAX	
No N			TI C2741	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
No N			1102741	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			13	m\/
No			TI COZANI	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	IIIV
TLC274BI Ng = 50 \ \(\text{Pi} \) Ng = 1.4 \ \(\text{Ng} \) S = 50 \ \(\text{Pi} \) Ng = 1.4 \ \(\text{Ng} \) Ng =	\/.a	Input offset voltege	TLC2/4AI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			7	
No continue	VIO	input onset voitage	TI COZADI	V _O = 1.4 V,	V _{IC} = 0,	25°C		390	2000	
Name			TLC2/4bi	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	\/
Average temperature coefficient of input offset voltage offset voltage (see Note 4) VO = 5 V, VIC = 5 V VIC = 5 V 25°C 0 0.1 400°C 100			TI C2701	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μν
No No No No No No No No			1602791	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2900	
Input offset current (see Note 4)	ανιο		ent of input					2		μV/°C
In In In In In In In In	1	Innut offset surrent (see Note	4)	V- 5 V	V E.V.	25°C		0.1		- A
In In In In In In In In	110	input offset current (see Note	4)	VO = 5 V	AIC = 2 A	85°C		26	1000	рА
$V_{ICR} \begin{array}{c} \text{Common-mode input voltage range} \\ \text{(see Note 5)} \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \text{voleshote 5} \end{array} \begin{array}{c} -0.2 \\ \text{Full range} \end{array} \begin{array}{c} -0.2 \\ \text{o.s.} \\ \text{voleshote 5} \end{array} \begin{array}{c} -0.2 \\ \text{s.s.} \end{array} \begin{array}{c} $	1	lament bing grownest (and Nate 4	1)	V- 5V	V:- 5.V	25°C		0.7		^
$ V_{ICR} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	l 'IB	input bias current (see Note 4	+)	VO = 2 V	AIC = 2 A	85°C		220	2000	рА
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-0.2	-0.3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C				V
$V_{OH} \text{High-level output voltage} V_{ID} = 100 \text{mV}, R_L = 10 \text{k} \\ \ \ \ \ \ \ \ \ \ \ \ \ \$	VICR		range					9.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(See Note 3)				Full range				V
$\begin{array}{c} V_{OH} \\ V_{OH} \\ V_{OL} \\ V_{OL$						l an range				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	8	8.5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	-40°C	7.8	8.5		V
$ V_{OL} Low-level output voltage \\ V_{ID} = -100 mV, I_{OL} = 0 \\ \hline -40^{\circ}C \\ \hline 85^{\circ}C \\ \hline 0 \\ 50 \\ \hline \\ 85^{\circ}C \\ \hline 0 \\ 50 \\ \hline \\ 85^{\circ}C \\ \hline 10 \\ 36 \\ \hline \\ -40^{\circ}C \\ \hline 7 \\ 47 \\ \hline \\ 85^{\circ}C \\ \hline 7 \\ 31 \\ \hline \\ 25^{\circ}C \\ \hline 65 \\ 85 \\ \hline \\ 7 \\ 31 \\ \hline \\ 85^{\circ}C \\ \hline \\ 7 \\ 31 \\ \hline \\ 65 \\ \hline \\ 60 \\ \hline \\ 85^{\circ}C \\ \hline \\ 60 \\ 88 \\ \hline \\ 60 \\ \hline \\ 85^{\circ}C \\ \hline \\ 60 \\ 88 \\ \hline \\ \\ 60 \\ \hline \\ 85^{\circ}C \\ \hline \\ 60 \\ 88 \\ \hline \\ 60 \\ \hline \\ 85^{\circ}C \\ \hline \\ 60 \\ 88 \\ \hline \\ \\ 60 \\ \hline \\ 85^{\circ}C \\ \hline \\ 60 \\ 88 \\ \hline \\ \\ 60 \\ \hline \\ 85^{\circ}C \\ \hline \\ 60 \\ 88 \\ \hline \\ \\ 60 \\ \hline \\ 85^{\circ}C \\ \hline \\ 60 \\ \hline \\ 92 \\ \hline \\ \\ 60 \\ \hline \\ \\ 60 \\ \hline \\ \\ 60 \\ \hline \\ \\ \\ 60 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $						85°C	7.8	8.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	10	36		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AVD		ge	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	7	47		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		amplilication				85°C	7	31		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	65	85		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common-mode rejection ratio)	V _{IC} = V _{ICR} min		-40°C	60	87		dB
						85°C	60	88		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	65	95		
No load Soc	ksvR			$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	-40°C	60	92		dB
$V_{O} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ No load $V_{O} $		(\(\text{\O}\) \(\text{\O}\)				85°C	60	96		
IDD Supply current (four amplifiers) No load -40°C 5.5 10 mA						25°C		3.8	8	
110 1000	I _{DD}	Supply current (four amplifiers	s)	1 0	$V_{IC} = 5 V$	-40°C		5.5	10	mA
				140 load		85°C		2.9	6.4	

[†] Full range is -40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	DADAMETED		TEGT 0011	SITIONS		TLC27	4M, TLC	279M	
	PARAMETER		TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	UNIT
		TLC274M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	mV
\/.0	Input offset voltage	TLG274IVI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	IIIV
VIO	input onset voltage	TLC279M	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	μV
		TLG279W	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3750	μν
ανιο	Average temperature coefficie offset voltage	nt of input			25°C to 125°C		2.1		μV/°C
li o	Input offset current (see Note	4)	V _O = 2.5 V,	V _{IC} = 2.5 V	25°C		0.1		рА
lio	input onset current (see Note	4)	VO = 2.5 V,	V C = 2.5 V	125°C		1.4	15	nA
l.s	Input bias current (see Note 4	١	V _O = 2.5 V,	V _{IC} = 2.5 V	25°C		0.6		pА
IB	input bias current (see Note 4)	VO = 2.5 V,	VIC = 2.5 V	125°C		9	35	nA
\\.	Common-mode input voltage	range			25°C	0 to 4	-0.3 to 4.2		V
VICR	(see Note 5)	· ·			Full range	0 to 3.5			V
					25°C	3.2	3.8		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	3	3.8		V
					125°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltage amplification	е	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	−55°C	3.5	35		V/mV
	amplification				125°C	3.5	16		
					25°C	65	80		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	81		dB
					125°C	60	84		
	0 1 1 1 1 1 1				25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	90		dB
	(— · DD/ — · 10/				125°C	60	97		
			V _O = 2.5 V,	\/:0 - 2.F.\/	25°C		2.7	6.4	
I _{DD}	Supply current (four amplifiers	s)	VO = 2.5 V, No load	vIC = 5.2 v	−55°C		4	10	mA
					125°C		1.9	4.4	

[†] Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless) otherwise noted)

	DADAMETER		TEST COM	DITIONS	- +	TLC27	4M, TLC	279M	UNIT
	PARAMETER		TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	UNII
		TLC274M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	\/
\ _{\/} , _	Input offset voltage	TLC2/4W	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
VIO	input onset voitage	TLC279M	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μV
		TLC279W	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			4300	μν
ανιο	Average temperature coefficie offset voltage	nt of input			25°C to 125°C		2.2		μV/°C
1	Input effect current (see Note	4)	V- 5 V	V E.V.	25°C		0.1		рА
liO	Input offset current (see Note	4)	$V_0 = 5 V$,	$V_{IC} = 5 V$	125°C		1.8	15	nA
	Input him ourrent (one Note 4	\	V = 5 V	\\:- F\\	25°C		0.7		рА
lΒ	Input bias current (see Note 4)	V _O = 5 V,	$V_{IC} = 5 V$	125°C		10	35	nA
	Common-mode input voltage	range			25°C	0 to 9	-0.3 to 9.2		V
VICR	(see Note 5)	3.			Full range	0 to 8.5			V
					25°C	8	8.5		
VOH	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	7.8	8.5		V
					125°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage amplification	е	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	−55°C	7	50		V/mV
	ampimoadon				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	87		dB
					125°C	60	86		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 V$	−55°C	60	90		dB
	(A 1 DD / A 1 D/				125°C	60	97		
					25°C		3.8	8	
I_{DD}	Supply current (four amplifiers	5)	V _O = 5 V, No load	$V_{IC} = 5 V$	−55°C		6.0	12	mA
					125°C		2.5	5.6	

[†]Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	т _А	TLC274C, TLC TLC274A TLC274BC, TI	C,	UNIT
					MIN TYP	MAX	
				25°C	3.6]
			V _{IPP} = 1 V	0°C	4]
SR	Slew rate at unity gain	$R_L = 10 \Omega$,		70°C	3		V/μs
Jok	Siew rate at unity gain	C _L = 20 pF, See Figure 1		25°C	2.9		ν/μ5
			V _{IPP} = 2.5 V	0°C	3.1		
				70°C	2.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C	25		nV/√ Hz
				25°C	320		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	0°C	340		kHz
		N_ = 10 K32,	Occ rigure r	70°C	260		
				25°C	1.7		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	0°C	2		MHz
		See Figure 3		70°C	1.3		
		V 40 V	, D	25°C	46°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$f = B_1$	0°C	47°		1
		0L = 20 F.,		70°C	44°		

operating characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 10 V

	PARAMETER	TEST CO	ONDITIONS	TA	TLC2740 TLC TLC2741	C274AC	;,	UNIT
					MIN	TYP	MAX	
				25°C		5.3		
			V _{IPP} = 1 V	0°C		5.9		
SR	Slow rate at unity gain	$R_L = 10 \Omega$		70°C		4.3		\//uo
SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1	V _{IPP} = 5.5 V	25°C		4.6	V/μs	
				0°C		5.1		
				70°C		3.8		
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		200		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,	CL = 20 pF,	0°C		220		kHz
		NC = 10 K22,	Occ rigure r	70°C		140		
				25°C		2.2		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	0°C		2.5		MHz
		occ r igare o		70°C		1.8		
)/ 40 ···)/	, ,	25°C		49°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	0°C		50°		
] -3 F.,	2221.34.00	70°C		46°		

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	ONDITIONS	TA		4I, TLC2 4BI, TL0		UNIT
					MIN	TYP	MAX	
				25°C		3.6		
			V _{IPP} = 1 V	-40°C		4.5		
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$		85°C		2.8		\//uo
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs
		Ĭ	V _{IPP} = 2.5 V	-40°C		3.5		
				85°C		2.3		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		320		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	$C_L = 20 pF$, See Figure 1	-40°C		380		kHz
		10 10 132,	occi igare i	85°C		250		
		., ,, ,,		25°C		1.7		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	-40°C		2.6		MHz
		Gee i iguie e		85°C		1.2		
		\\. 10 m\\	4 D	25°C		46°		
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$ $C_{\perp} = 20 \text{ pF},$	f = B ₁ , See Figure 3	-40°C		49°		
		, ,		85°C		43°		

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	ONDITIONS	TA	TLC274I, TLC2 TLC274BI, TL		UNIT
			_		MIN TYP	MAX	
				25°C	5.3		
			V _{IPP} = 1 V	-40°C	6.7		
SR	Slew rate at unity gain	$R_L = 10 \Omega$		85°C	4		V/μs
Jok	Siew rate at unity gain	C _L = 20 pF, See Figure 1		25°C	4.6		ν/μ5
			V _{IPP} = 5.5 V	-40°C	5.8		
				85°C	3.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	Rs = 20 Ω ,	25°C	25		nV/√ Hz
				25°C	200		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,	C _L = 20 pF, See Figure 1	-40°C	260		kHz
		INC = 10 Kaz,	occ rigare r	85°C	130		
				25°C	2.2		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	-40°C	3.1		MHz
		Occ riguic 3		85°C	1.7		
		\/. 10 m\/	4 D	25°C	49°		
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$ $C_{\parallel} = 20 \text{ pF},$	f = B ₁ , See Figure 3	-40°C	52°		
		-3 F.,		85°C	46°		

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	NDITIONS	т.	TLC27	4M, TLC	279M	UNIT
	PARAMETER	TEST CO	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		3.6		
			V _{IPP} = 1 V	−55°C		4.7		
SR	Clay rate at unity gain	$R_L = 10 \text{ k}\Omega$		125°C		2.3		\////
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs
		3	$V_{IPP} = 2.5 V$	−55°C		3.7		
				125°C		2		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		320		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,	C _L = 20 pF, See Figure 1	−55°C		400		kHz
		10 132,	Occ rigure r	125°C		230		
		., ,, ,,		25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−55°C		2.9		MHz
		Occ rigure 3		125°C		1.1		
)/ 40 m)/	, ,	25°C		46°		
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$ $C_{\parallel} = 20 \text{ pF},$	f = B ₁ , See Figure 3	−55°C		49°		
				125°C		41°		

operating characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 10 V

	DADAMETED	TEST CO	NDITIONS	Ţ.	TLC274	4M, TLC	279M	LINUT
	PARAMETER	1 1551 CO	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		5.3		
			V _{IPP} = 1 V	−55°C		7.1		
SR	Slow rate of unity gain	$R_L = 10 \Omega$,		125°C		3.1		\//uo
SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		4.6		V/μs
			V _{IPP} = 5.5 V	−55°C		6.1		
				125°C		2.7		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		200		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF, See Figure 1	−55°C		280		kHz
		N_ = 10 K22,	Occ rigare r	125°C		110		
				25°C		2.2		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−55°C		3.4		MHz
		See Figure 3		125°C		1.6		
		V 40V	, D	25°C		49°		
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$ $C_{\perp} = 20 \text{ pF},$	f = B ₁ , See Figure 3	−55°C		52°		
		- 20 F. ,	2501.90.00	125°C		44°		

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

electrical characteristics, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONI	OITIONE	TLC274Y		UNIT	
	PARAMETER	IESI CONL	DITIONS	MIN	TYP	MAX	UNII
V _{IO}	Input offset voltage	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
lιο	Input offset current (see Note 4)	$V_0 = 2.5 V$,	V _{IC} = 2.5 V		0.1		рΑ
I _{IB}	Input bias current (see Note 4)	$V_0 = 2.5 V$,	V _{IC} = 2.5 V		0.6		рА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		V
Vон	High-level output voltage	V _{ID} = 100 mV,	R _L = 10 kΩ	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
A _{VD}	Large-signal differential voltage amplification	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	5	23		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	80		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (four amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,	·	2.7	6.4	mA

electrical characteristics, V_{DD} = 10 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CON	OITIONS	Т	LC274Y		UNIT
	PARAMETER	TEST CONI	DITIONS	MIN	TYP	MAX	UNII
VIO	Input offset voltage	$V_{O} = 1.4 \text{ V},$ R _S = 50 Ω ,	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
lio	Input offset current (see Note 4)	V _O = 5 V,	V _{IC} = 5 V		0.1		pА
I _{IB}	Input bias current (see Note 4)	V _O = 5 V,	V _{IC} = 5 V		0.7		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		٧
Vон	High-level output voltage	V _{ID} = 100 mV,	R _L = 10 kΩ	8	8.5		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
A _{VD}	Large-signal differential voltage amplification	$V_0 = 1 \text{ V to 6 V},$	R _L = 10 kΩ	10	36		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	85		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (four amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,		3.8	8	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

operating characteristics, V_{DD} = 5 V, T_A = 25°C

	PARAMETER	Ι,	EST CONDITION	ie.	Т	LC274Y		UNIT
	PARAIMETER	'	EST CONDITION		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$,	C _L = 20 _P F,	V _{IPP} = 1 V		3.6		V/µs
SIX	Siew rate at unity gain	See Figure 1		V _{IPP} = 2.5 V		2.9		ν/μ5
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 10 \text{ k}\Omega$,		320		kHz
B ₁	Unity-gain bandwidth	$V_I = 10 \text{ mV},$	C _L = 20 pF,	See Figure 3		1.7		MHz
φ _m	Phase margin	V _I = 10 mV, See Figure 3	$f = B_1$,	C _L = 20 _P F,		46°		

operating characteristics, $V_{\mbox{\scriptsize DD}}$ = 10 V, $T_{\mbox{\scriptsize A}}$ = 25°C

	PARAMETER		TEST CONDITION	ie.	TLC274Y			UNIT
	PARAMETER		EST CONDITION	V 5	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$,	C _L = 20 _P F,	V _{IPP} = 1 V		5.3		V/µs
SIX	Siew rate at unity gain	See Figure 1		V _{IPP} = 5.5 V		4.6		ν/μ5
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 10 \text{ k}\Omega$,		200		kHz
B ₁	Unity-gain bandwidth	$V_I = 10 \text{ mV},$	C _L = 20 pF,	See Figure 3		2.2		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	$f = B_1$,	C _L = 20 _P F,		49°		

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC274 and TLC279 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

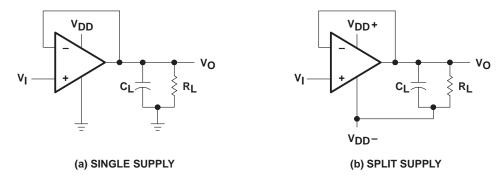


Figure 1. Unity-Gain Amplifier

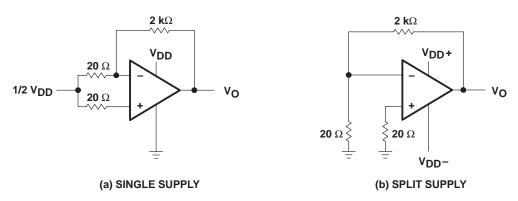


Figure 2. Noise-Test Circuit

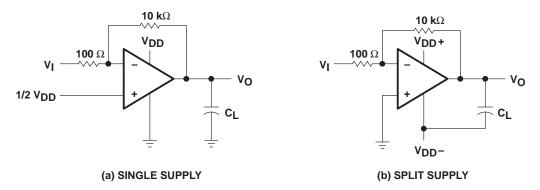


Figure 3. Gain-of-100 Inverting Amplifier

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC274 and TLC279 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

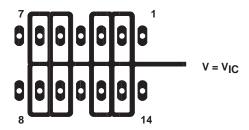


Figure 4. Isolation Metal Around Device Inputs (J and N packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

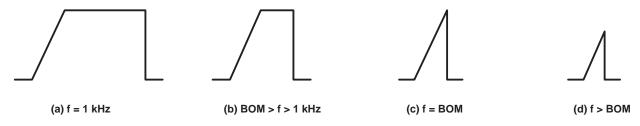


Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS

SLOS092C - SEPTEMBER 1987 - REVISED MARCH 1998

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	6, 7
αVIO	Temperature coefficient of input offset voltage	Distribution	8, 9
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
V _{OL}	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
AVD	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
lio	Input offset current	vs Free-air temperature	22
VIС	Common-mode input voltage	vs Supply voltage	23
IDD	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
Vn	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

TYPICAL CHARACTERISTICS

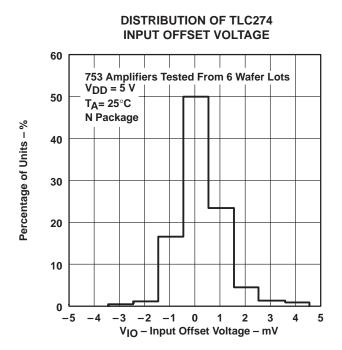


Figure 6

DISTRIBUTION OF TLC274 AND TLC279

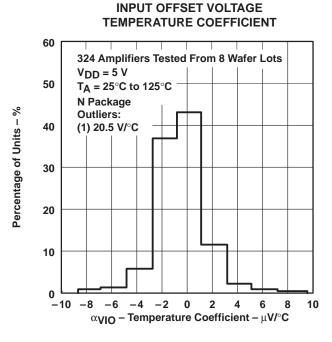


Figure 8

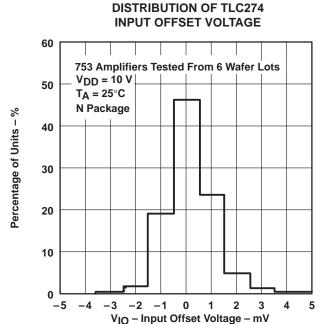


Figure 7

DISTRIBUTION OF TLC274 AND TLC279 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

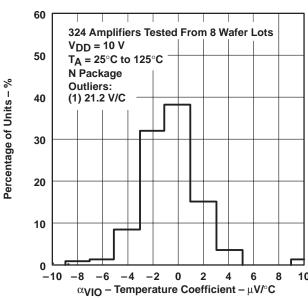


Figure 9

TYPICAL CHARACTERISTICS[†]

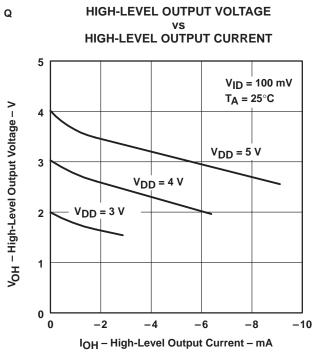
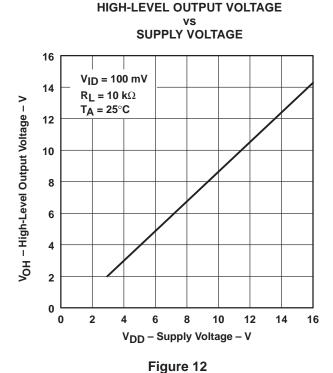



Figure 10

HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT

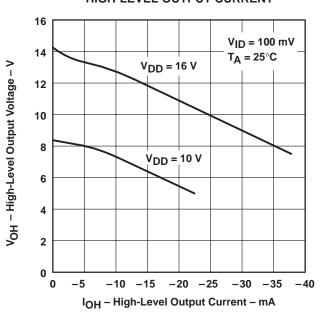


Figure 11

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

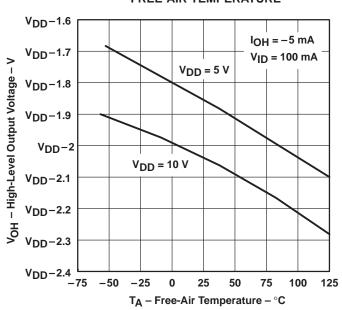


Figure 13

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS†

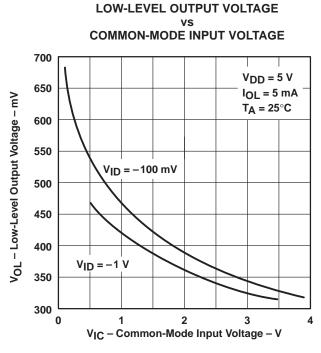


Figure 14

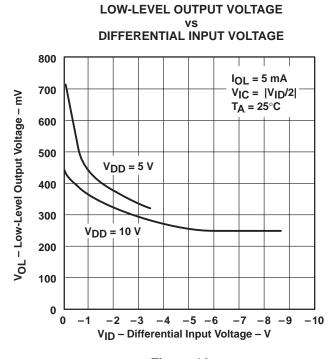


Figure 16

LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE

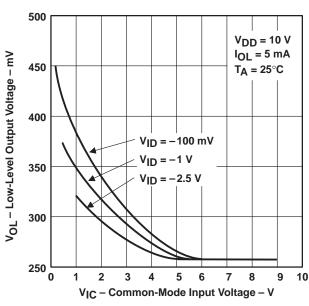


Figure 15

LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

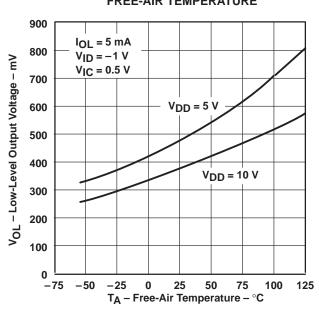


Figure 17

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LOW-LEVEL OUTPUT VOLTAGE

TYPICAL CHARACTERISTICS[†]

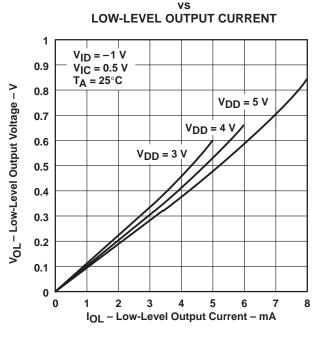


Figure 18

LARGE-SIGNAL

DIFFERENTIAL VOLTAGE AMPLIFICATION

SUPPLY VOLTAGE

60 $T_A = -55^{\circ}C$ $R_L = 10 \text{ k}\Omega$ 50 $T_A = 0^{\circ}C$ A_{VD} – Large-Signal Differential Voltage Amplification – V/mV 40 30 $T_{\Delta} = 25^{\circ}C$ 20 T_A = 85°C T_A = 125°C 10 0 2 0 10 16 8 12 14

V_{DD} - Supply Voltage - V

Figure 20

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

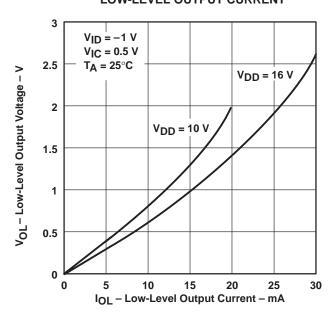
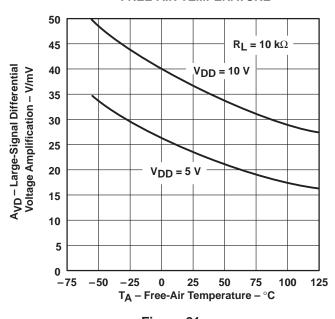
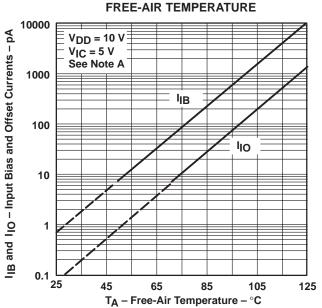


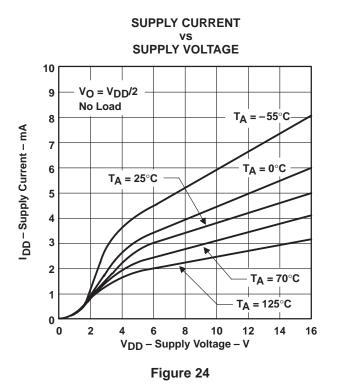
Figure 19

LARGE-SIGNAL **DIFFERENTIAL VOLTAGE AMPLIFICATION** vs FREE-AIR TEMPERATURE




Figure 21

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


TYPICAL CHARACTERISTICS[†]

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Figure 22

COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT vs

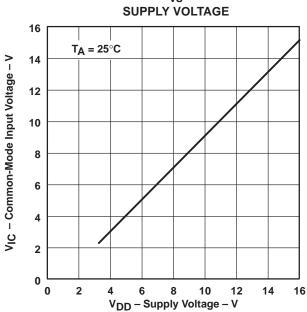


Figure 23

SUPPLY CURRENT

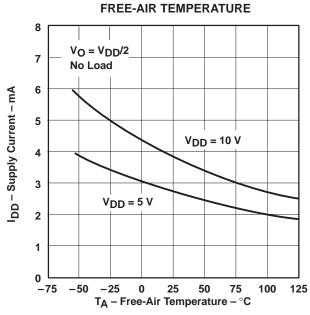


Figure 25

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS†

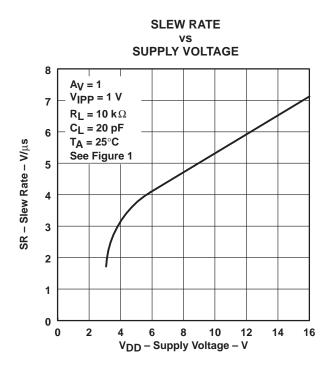


Figure 26

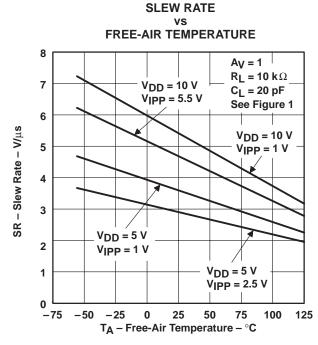
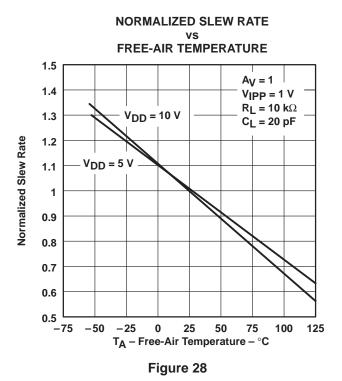



Figure 27

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

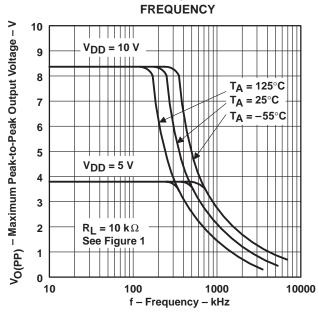
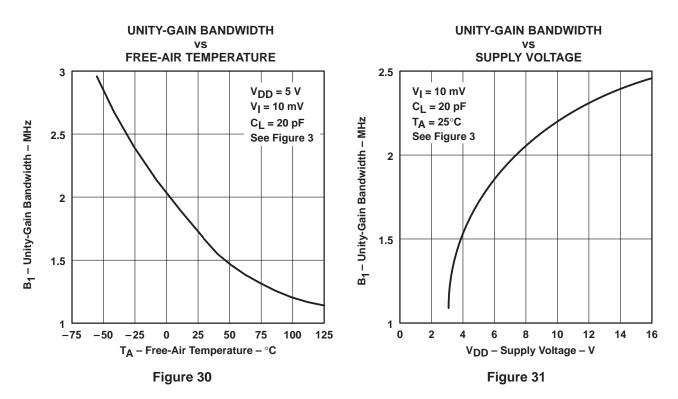
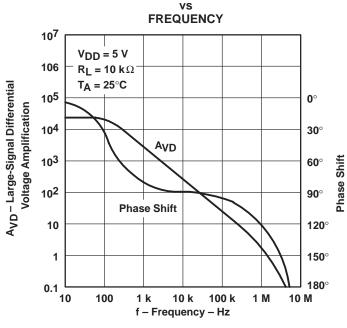



Figure 29


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 32

TYPICAL CHARACTERISTICS†

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

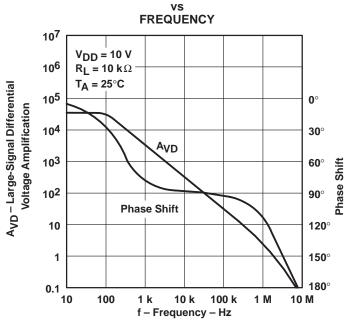
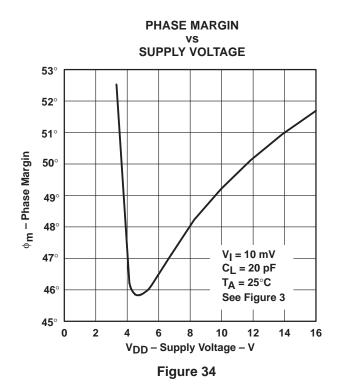
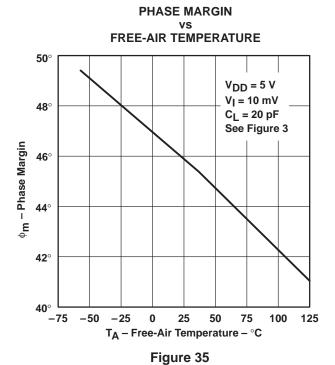




Figure 33

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

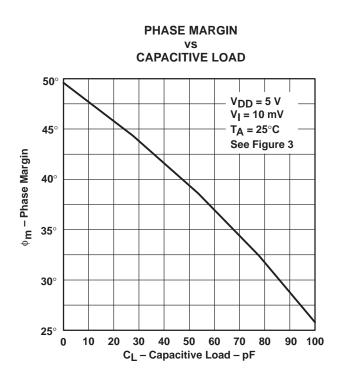


Figure 36

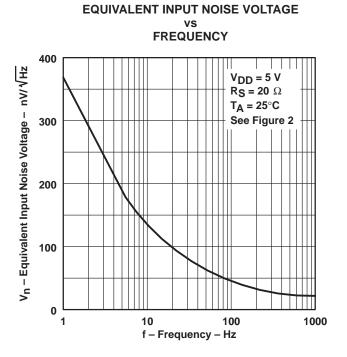


Figure 37

single-supply operation

While the TLC274 and TLC279 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC274 and TLC279 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC274 and TLC279 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require R_C decoupling.

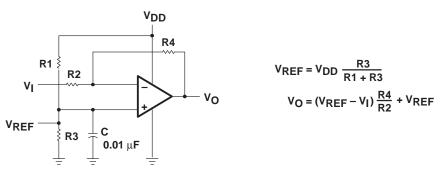


Figure 38. Inverting Amplifier With Voltage Reference

(b) 0217110112 511710025 001121101120 (prototrou)

Figure 39. Common Versus Separate Supply Rails

APPLICATION INFORMATION

input characteristics

The TLC274 and TLC279 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1$ V at $T_A = 25^{\circ}$ C and at $V_{DD} - 1.5$ V at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC274 and TLC279 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC274 and TLC279 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

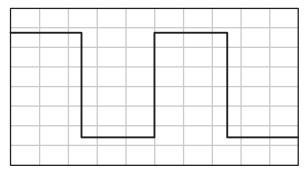
noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC274 and TLC279 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

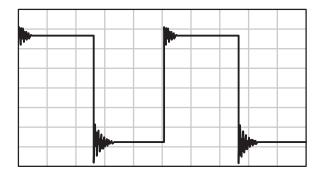


Figure 40. Guard-Ring Schemes

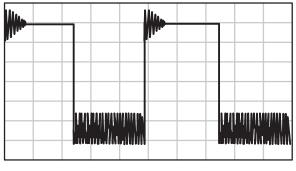
output characteristics


The output stage of the TLC274 and TLC279 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

All operating characteristics of the TLC274 and TLC279 were measured using a 20-pF load. The devices drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.



APPLICATION INFORMATION


output characteristics (continued)

(a) $C_L = 20 \text{ pF}$, $R_L = NO \text{ LOAD}$

(b) $C_L = 130 \text{ pF}, R_L = NO \text{ LOAD}$

(c) $C_L = 150 \text{ pF}$, $R_L = NO \text{ LOAD}$

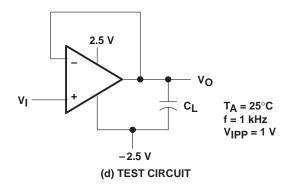
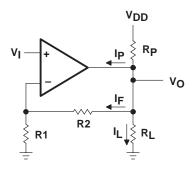



Figure 41. Effect of Capacitive Loads and Test Circuit

Although the TLC274 and TLC279 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (R_P) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately $60~\Omega$ and $180~\Omega$, depending on how hard the op amp input is driven. With very low values of R_P, a voltage offset from 0~V at the output occurs. Second, pullup resistor R_P acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

output characteristics (continued)

$$Rp = \frac{V_{DD} - V_{O}}{I_{F} + I_{I} + I_{P}}$$

Ip = Pullup current required by the operational amplifier (typically $500 \mu A$)

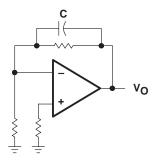
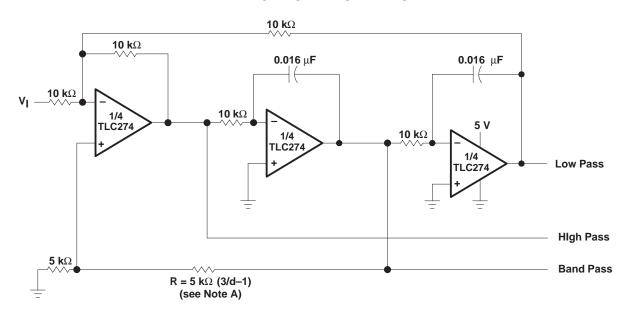


Figure 43. Compensation for Input Capacitance

Figure 42. Resistive Pullup to Increase VOH

feedback

Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.


electrostatic discharge protection

The TLC274 and TLC279 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature-dependent and have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC274 and TLC279 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

NOTE A: d = damping factor, 1/Q

Figure 44. State-Variable Filter

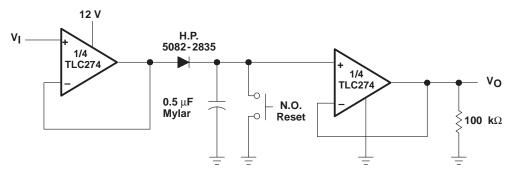
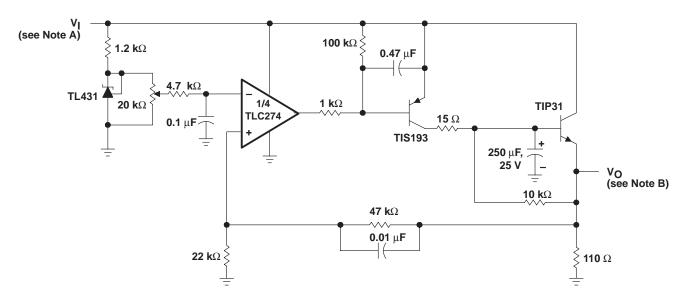
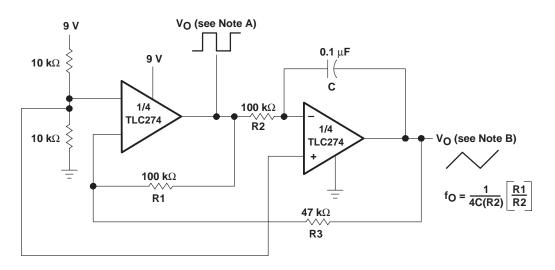




Figure 45. Positive-Peak Detector

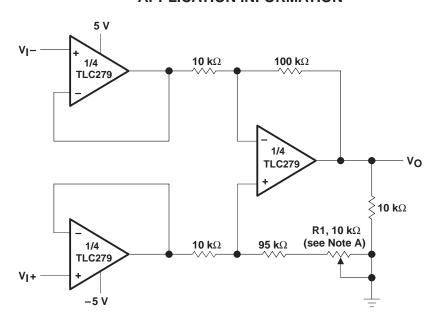

NOTES: B. $V_I = 3.5 \text{ V to } 15 \text{ V}$ C. $V_O = 2 \text{ V}, 0 \text{ to } 1 \text{ A}$

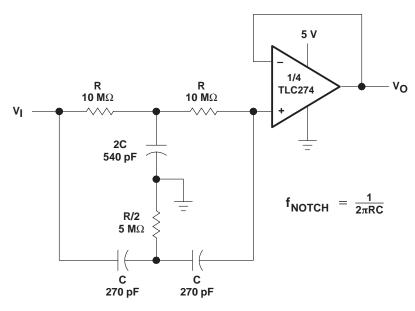
Figure 46. Logic-Array Power Supply

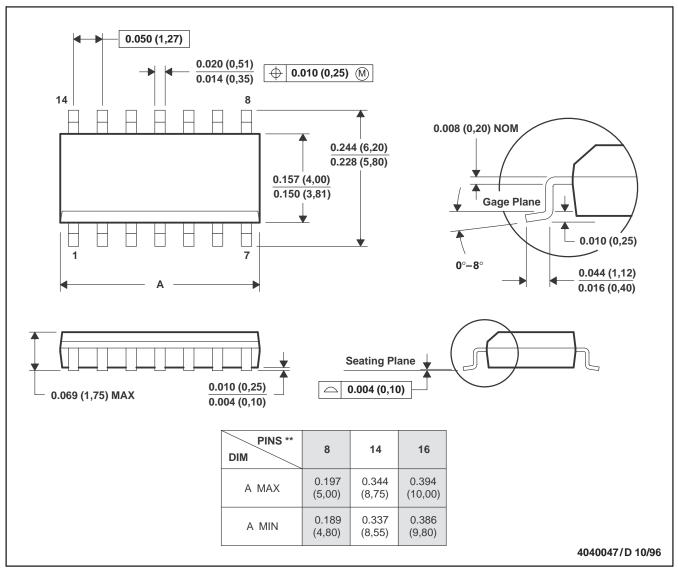
NOTES: A. $V_{O(PP)} = 8 \text{ V}$ B. $V_{O(PP)} = 4 \text{ V}$

Figure 47. Single-Supply Function Generator

NOTE C: CMRR adjustment must be noninductive.

Figure 48. Low-Power Instrumentation Amplifier




Figure 49. Single-Supply Twin-T Notch Filter

MECHANICAL INFORMATION

D (R-PDSO-G**)

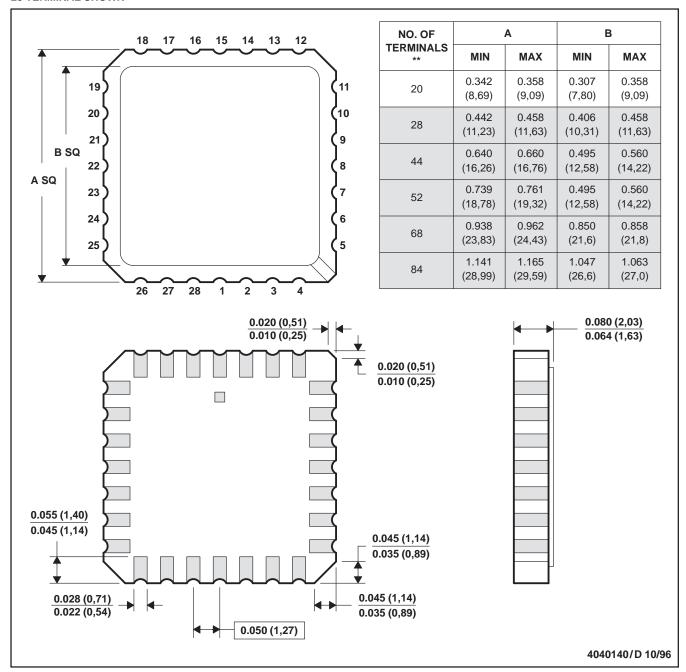
PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-012

MECHANICAL INFORMATION

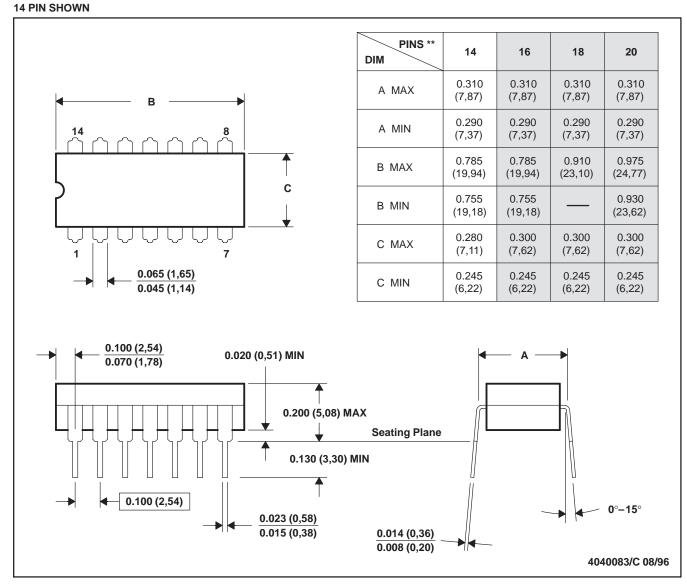
FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004



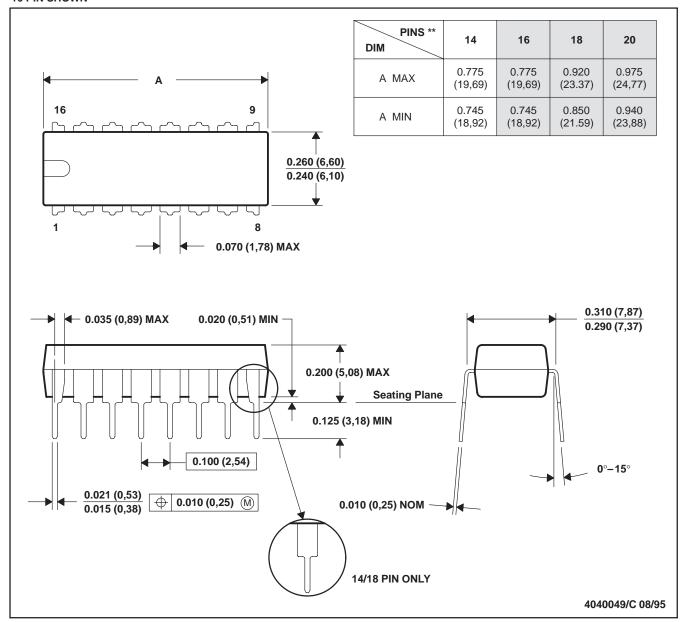
MECHANICAL INFORMATION

J (R-GDIP-T**)

(... 02... . ,

CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, and GDIP1-T20

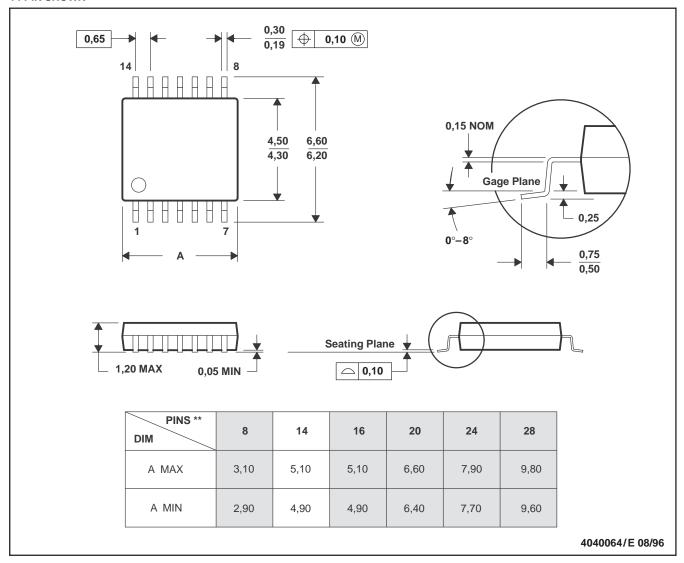
MECHANICAL INFORMATION

N (R-PDIP-T**)

16 PIN SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

MECHANICAL INFORMATION

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated