
- 5 A Continuouo On-State Current
- 30 A Surge-Current
- Glass Passivated Wafer
- 400 V to 800 V Off-Stata Voltage
- Max GT of 200 µA

Pin 2 is in electrical contact with the mounting base.

MDC1ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
	TIC106D		400		
Repetitive peak off-state voltage (see Note 1)	TIC106M	.,	600		
	TIC106S	V _{DRM}	700	l v	
	TIC106N		800	ł	
Repetttfve peak reverse voltage	TIC106D		400		
	TIC106M	.,	600	v	
	TIC106S	V _{RRM}	700		
	TIC106N		800		
Continuous on-state current at (or below) 80°C case temperature (see N	I _{T(RMS)}	5	A		
Average on-state current (180° conduction angle) at (or below) 80°C case temperature (see Note 3)			3.2	Α	
Surge on-state current (see Note 4)			30	A	
Peak positive gate current (pulse width ≤ 300 μs)			0.2	A	
Peak gate power dissipation (pulse width ≤ 300 μs)			1.3	ŵ	
Average gate power dissipation (see Note 5)			0.3	w	
Operating case temperature range			-40 to +110	°C	
Storage temperature range			-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds		T _{stg}	230	- <u>°</u> C	

- NOTES: 1. These values apply when the gate-cathode resistance $R_{GK} = 1 k\Omega$.
 - 2. These values apply for continuous dc Operation with resistive load. Above 80°C derate linearly to zero at 110°C.
 - This value may be applied continuousty under single phase 50 Hz half-sine-wave Operation withresistive load. Above 80°C derate linearly to zero at 110°C.
 - 4. This value applies for one 50 Hz half-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
 - 5. This value applies for a maximum averaging time of 20 ms.

TIC106 SERIES SILICON CONTROLLED RECTIFIERS

APRIL 1971 - REVISED MARCH 1997

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
IDRM	Repetitive peak off-state current	V _D = rated V _{DRM}	R _{GK} = 1 kΩ	T _C = 110°C			40 0	μА
IRRM	Repetitive peak reverse current	V _R = rated V _{RRM}	I _G = 0	T _C = 110°C			1	mA
I _{GT}	Gate trigger current	V _{AA} = 6 V	$R_L = 100 \Omega$	t _{p(g)} ≥ 20 μs		60	200	μА
	Gate trigger voltage	$V_{AA} = 6 \text{ V}$ $t_{p(q)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$	T _C = - 40°C			1.2	
V _{GT}		$V_{AA} = 6 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$		0.4	0.4 0.6	1	V
		$V_{AA} = 6 \text{ V}$ $t_{p(q)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$	T _C = 110°C	0.2			
	Holding current	V _{AA} = 6 V Initiating I _T = 10 mA	R _{GK} = 1 kΩ	T _C = - 40°C			8	mA
lн		V _{AA} = 6 V Initiating I _T = 10 mA	R _{GK} = 1 kΩ				5	111/4
V _{TM}	Peak on-state voltage	I _{TM} = 5 A	(See Note 6)				1.7	>
dv/dt	Critical rate of rise of off-state voltage	V _D = rated V _D	R _{GK} = 1 kΩ	T _C = 110°C		10		V/µs

NOTE 6: This Parameter must be measured using pulse techniques, tp = 300 ps, duty cycle ≤ 2 %. Voltage sensing-contacts, separate from the current canying contacts, are located within 3.2 mm from the device body.

thermal characteristics

PARAMETER			NP	MAX	UNIT
Resc	Junction to CASE thermal resistance			3.5	°C/W
R _{OJA}	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

PARAMETER			TEST CONDITIO	TEST CONDITIONS		NP	MAX	UNIT	
	t _{gt}	Gate-controlled turn-on time	I _T = 5 A	l _g = 10 mA	See Figure 1		1.75		ha
	tq	Clrcuit-commutated turn-off time	I _T = 5 A I _{RM} = 8 A	l _{g=10 mA}	See Figure 2		7.7		μs

PARAMETER MEASUREMENT INFORMATION

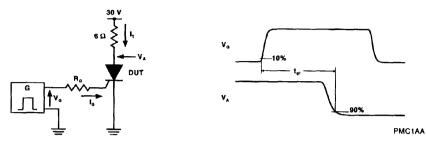
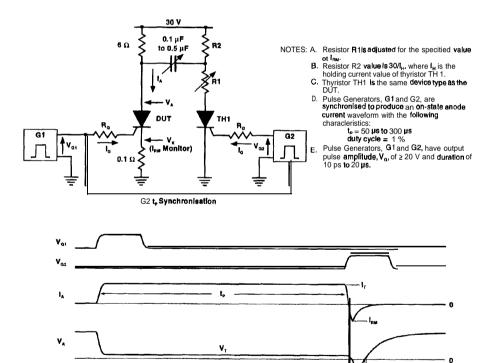
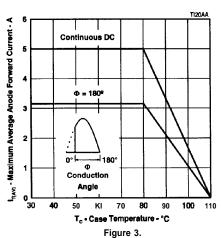
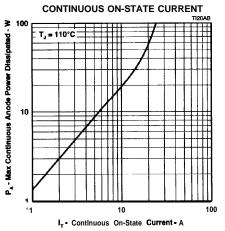


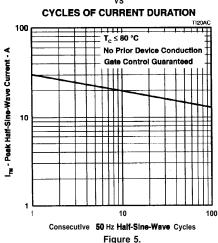
Figure 1. Gate-controlled turn-On time

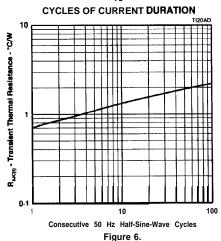



Figure 2. Circuit-commutated turn-off time


PMC1AB

TYPICAL CHARACTERISTICS


AVERAGE ANODE ON-STATE CURRENT DERATING CURVE


MAX CONTINUOUS ANODE POWER DISSIPATED VS CONTINUOUS ON-STATE CURRENT

SURGE ON-STATE CURRENT

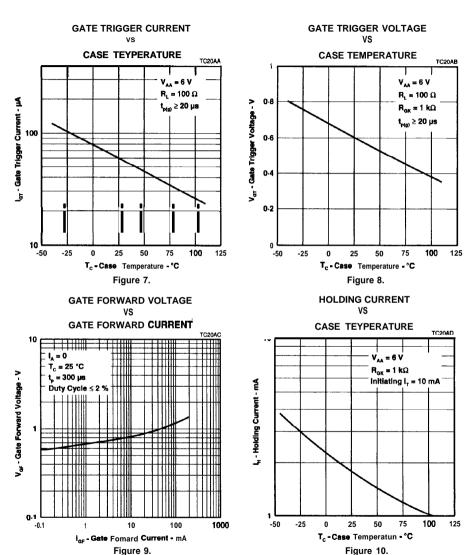
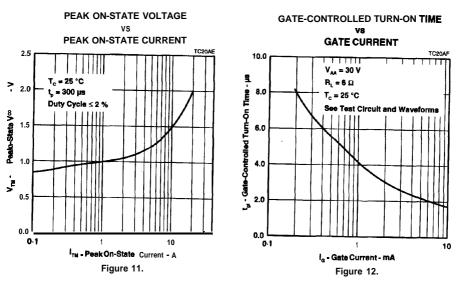
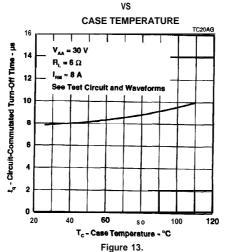


Figure 4. TRANSIENT THERMAL RESISTANCE


PRODUCT INFORMATION

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

CIRCUIT-COMMUTATED TURN-OFF TIME

The state of the s